
Math 2568, Exam#2,p ,rr. K€Y
Instructions: Show all You may not use a calculator on this port ion of the exam. Give exact
answers (yes, that mea
as possible. Be sure to

fractions, square roots and exponentials, and not decimals). Reduce as much
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When you are f inished

1-. Determine if  each
(2 points each)

a . T

plete al l  parts of each question. provide explanations where requested.
this port ion of exam, get part l l .

is True or False. For each of the questions, assume that A isn x n.

A system that does have a unique solution cannot be solved with
Cramer's rule.

A matrix is invert ible i f  the determinant of the matrix is 0.

l f  2 is an eigenvalue of  ̂ 4, then 12 is an eigenvalue of  ̂ 42.

l f  zero is not an eigenvalue of A, then the determinant of A is non-zero.

l f  r7 is an eigenvector of .4, then I is also an eigenvector of eA.

lf  A is invert ible, then A is diagonalizable with real numbers.

Row operations on a matrix do not change its eigenvalues.

Similar matrices always have the same eigenvectors.

The dimension of the eigenspace of ann x rz matrix is always n.

rhe vector [f] i' ,"t an eisenvecto, or [f t] L? ;l Ill, F;1, [,'il
A7x7 matrix has four eigenvalues, two eigenspaces are one
dimensional, two eigenspaces are two dimensional; therefore this
matrix is diagonalizable. t{-t".o i; cr.n.2 t" fu,Ar.^^"4

stochastic matrices, regardless of their size, always have at least one
real eigenvector.

The real eigenvalues of a system of l inear oDEs must always both
attract or repel from the origin.

In a discrete dynamical system, the magnitude of 2 determines whether
a complex eigenvalues causes the origin to repel or attract.

The cross product is one type of inner product.

Normalizing a vector refers to making a vector pointing in a part icular
direction have components that satisfy certain condit ions.
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by the cofactor method. (12 points)
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bythe row-reducing method. (1L points)
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Given that A and B

a) det AB

3 x 3 matrices with det A = -2 and det B = 5, f ind the fol lowing. (4 points each)
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Find the equi l

the vector. (8 poin

? s
L-: r?l

7. For each of the s
origin an attractor, a
they are real) and pl

a,  7 t  = 0.97,7

V"\h

vector of the matrix F f' B ' 3l'  = 
L.; 

' i l  alsebraical ly. Be sure to properly normalize

)

. 2 d ,  * , 3 * 2 - t a

y,  - -  
| * ,

Y r =  Y t

ions below, determine the propert ies of the l inear system of ODEs, ls the
repeller, or a saddle point? sketch the eigenvalues on the graphs provided (i f

some sample trajectories. (5 points each)
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Math 2568, Exam #2, l l ,  Summer 20L5 Name

Instructions: Show all rk. You may use a calculator onrthis port ion of the exam. To show work on
calculator problems,
(yes, that means fractio
to give a decimal answe
directed to. Be sure to mplete al l  parts of each questiqn. Provide explanations where requested.

the commands you used, and the resulting matrices. Give exact answers
square roots and exponentials; and not decimals) unless specif ical ly directed
This wil l  require some operations to be done by hand even if  not specif ical ly
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6. Determine if polynomials p(t) = 1. - t ,q(t)
product (/ lg) f (t)s(t)dt (8 points)
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