Name

Instructions: Show all work. You may not use a calculator on this portion of the exam. Give exact answers (yes, that means fractions, square roots and exponentials, and not decimals). Reduce as much as possible. Be sure to complete all parts of each question. Provide explanations where requested. When you are finished with this portion of exam, get Part II.

1.			each sta	tement is True or False. (1 points each)
	a.	Т	$\mathbf{\Theta}$	If a system of linear equations is consistent, then it has infinitely many solutions.
				solutions. only if also dependent
	b.	Т	Œ	A linear system may have exactly two solutions. only on law is
	C.		F	A homogeneous system of four linear equations in six variables has infinitely many solutions.
	d.		F	Multiplying a row of a matrix by a constant is one of the elementary row operations.
	e.	(T)	F	The matrix equation $A\vec{x}=\vec{b}$, where A is the coefficient matrix and \vec{x}
		<u> </u>		and \vec{b} are column matrices, can be used to express a system of linear equations.
	f.	Т	(F)	Matrix multiplication is commutative. His not commutative
	g.	T	F	Every matrix A has an additive inverse.
	h.	Т	(If A can be row-reduced to the identity, then A is singular. $i + i - n$ on Surgular.
	i.	Т	0	The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible when $ab - dc \neq 0$. $ad - bc \neq 0$
	j.	Т	(F)	If A is a square matrix, then the system of linear equations $A\vec{x}=\vec{b}$ has a
				unique solution. it may have 1,0,000 wy many
	k.	T		If E is an elementary matrix, then $2E$ is an elementary matrix.
	l.	T	(The zero matrix is an elementary matrix. Not an allowable you
	m.	Т	F	The product of a 2×3 matrix and a 3×5 matrix is a 5×2 matrix.
	n.	Т	Ē	If A and B are nonsingular $n \times n$ matrices, then $A + B$ is a nonsingular matrix.
				[10]+[10]-[20]
				to a part of the second of the

2. Solve the system of equations $\begin{cases} 2x + 3y = -1 \\ x - y = 0 \end{cases}$ by writing the system as an augmented matrix and row-reducing by hand. (5 points)

and row-reducing by hand. (5 points)

$$\begin{bmatrix}
2 & 3 & -1 \\
1 & -1 & 0
\end{bmatrix}
R_1 + (-1)R_2 \rightarrow R_1$$

$$\begin{bmatrix}
1 & 4 & -1 \\
1 & -1 & 0
\end{bmatrix}
R_2 + (-4)R_2 \rightarrow R_2$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 4 & -1 \\
0 & 5 & -1
\end{bmatrix}$$

3. Solve the same system in #2 but writing the system as a matrix equation and using inverse matrix methods. (5 points)

$$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2-3} \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} -1 & +0 \\ 1 & +0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ -\frac{1}{5} \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} -1 & +0 \\ 1 & +0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ -\frac{1}{5} \end{bmatrix}$$

4. For the matrices $A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$. Calculate the following matrices. If the operation is not defined, explain why not. (4 points each) a. $C^T + 3D$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 15 \\ -6 \end{bmatrix} = \begin{bmatrix} 16 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} -2+6 & 6-15 \\ -4-2 & 12+5 \end{bmatrix} = \begin{bmatrix} 4 & -9 \\ -6 & 17 \end{bmatrix}$$

$$[1 \ 1][5] = 5-2 = 3$$

d.
$$A^{-1}$$

$$\frac{1}{2+12} \begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1/14 & 3/14 \\ 1/4 & 2 \end{bmatrix} = \begin{bmatrix} 1/14 & 3/14 \\ 1/4 & 2 \end{bmatrix}$$

e.
$$A^2$$

$$\begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} 2 & -3 \end{bmatrix} = \begin{bmatrix} 4 & -12 & -6 & -3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} -8 & -9 \\ 12 & -11 \end{bmatrix}$$

f.
$$B^T$$

$$\begin{bmatrix} -1 & -2 \\ 3 & 5 \end{bmatrix}$$

g.
$$2A - 3B$$

$$\begin{bmatrix} 4 & -6 \\ 9 & 2 \end{bmatrix} + \begin{bmatrix} 3 & -9 \\ 6 & -15 \end{bmatrix} = \begin{bmatrix} 7 & -15 \\ 14 & -13 \end{bmatrix}$$

5. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Find a condition (or conditions) on a, b, c, d so that $AA^T = [\mathbf{0}]$. (6 points)

6. Write the 3×3 elementary matrix E to perform the following row operations. (3 points each)

a.
$$2R_1 + R_2 \rightarrow R_2$$

b.
$$R_1 \leftrightarrow R_3$$

7. Find the LU factorization of $A = \begin{bmatrix} 1 & 7 \\ 2 & 20 \end{bmatrix}$. (5 points)

Instructions: Show all work. You **may** use a calculator on this portion of the exam. To show work on calculator problems, show the commands you used, and the resulting matrices. **Give exact answers** (yes, that means fractions, square roots and exponentials, and not decimals) unless specifically directed to give a decimal answer. This will require some operations to be done by hand even if not specifically directed to. Be sure to complete all parts of each question. Provide explanations where requested.

1. Solve the system $\begin{cases} 2x_1 + 2x_2 - x_3 & = 1 \\ -x_2 & + 3x_4 = 2 \end{cases}$ and write the solution in parametric form. (5 points)

$$\begin{bmatrix} 2 & 2 & -1 & 0 & | & 1 \\ 0 & -1 & 0 & 3 & | & 2 \end{bmatrix} \Rightarrow \text{web} \Rightarrow$$

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} & 3 & | & \frac{3}{2} \\ 0 & 1 & 0 & -3 & | & -2 \end{bmatrix}$$

$$X_{1} = \frac{1}{2}X_{3} - \frac{3}{3}X_{4} + \frac{5}{2}X_{2}$$

$$X_{2} = X_{3}$$

$$X_{3} = X_{3}$$

$$X_{4} = X_{3}$$

$$X_{4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -\frac{3}{3} & 3 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \frac{5}{2} & \frac{7}{2} & 0 \\ 0 & 1 \end{bmatrix}$$

2. Determine the value of a for which $\begin{bmatrix} a & 1 & 1 \\ 2 & a-1 & 1 \end{bmatrix}$ is consistent. (5 points)

3. Determine whether the solution to $\begin{cases} -x & -z = 0 \\ -3x + y - 3z = 0 \end{cases}$ is trivial or non-trivial. Explain your reasoning. (5 points)

the solution is trival since [x]=[8]

4. Consider the traffic flow graph below. Write the matrix to the system and solve it. If the solution is dependent, write it in parametric form. (7 points)

 $X_2 + X_6 = X_1 + 300 \rightarrow -X_1 + X_2 + X_6 = 300$

next page

$$X_3 + 200 = X_2 + X_7$$

 $X_3 + X_8 = 400 + 500$
 $100 + 500 = X_6 + 300$
 $300 + X_7 = 400 + X_4$

$$(2-x_3 + x_7 = 200)$$
 $x_3 + x_8 = 900$
 $x_6 = 300$
 $-x_4 + x_7 = 100$
 $x_4 - x_5 = -200$

$$X_1 = -X_7 - X_8 + 11.00$$
 $X_2 = -X_7 - X_8 + 11.00$
 $X_3 = -X_8 + 9.00$
 $X_4 = X_7 - 100$
 $X_5 = X_7 + 100$
 $X_6 = 300$

5. Set up and solve the loop circuit diagram below. Round your values for the currents to three significant digits. (7 points)

6. Encode the message NO MAN CAN SERVE TWO MASTERS with the matrix $A = \begin{bmatrix} 6 & 8 & 1 & -5 \\ 6 & -9 & 7 & 6 \\ -4 & 6 & 1 & -9 \\ -1 & 1 & 1 & 3 \end{bmatrix}$ using 0 as a space and the corresponding position (number) in the alphabet for letters. (6 points)

7. Use a system of equations to write the partial fraction decomposition of the rational expression below. Use the matrix to solve the system. (6 points)

$$\frac{4x^2}{(x+1)^2(x-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

$$Ax^2 + Bx^2 = 4x^2 \Rightarrow A + B = 4$$

 $2Ax + Cx = 0 \Rightarrow 2A + C = 0$

$$\frac{4x^2}{(x+1)^2(x-1)} = \frac{1}{X-1} + \frac{3}{X+1} - \frac{2}{(x+1)^2}$$