Chapter 10: Things To Know

Section 10.1 Angle Measures of Polygons and Regular Polygon Tessellations

Objectives

- 1. Find the Measures of Interior Angles of Polygons.
- 2. Find the Measures of Exterior Angles of Polygons.
- 3. Determine Whether a Tessellation of Regular Polygons is Formed.

Vocabulary

- exterior angles of the polygon
- tessellation

Theorem Polygon Interior-Angle Sum Theorem

The sum of the measures of the interior angles of a convex *n*-gon is:

Corollary Regular Polygon Interior Angle Corollary The measure of each interior angle of a regular n-gon is

Example Finding the Sum of the Measures of the Angles of a Polygon Find the sum of the measures of the interior angles of a convex octagon.

Example Finding the Measure of an Interior Angle Find the value of x in the figure. Then use x to find $m \angle A$ and $m \angle B$.

Example Using the Regular Polygon Interior-Angle Corollary

The Sino-Steel Tower is a hexagonal, honey comb-looking "green" building, in Tianjin, China, designed by

MAD Studios architects. Find the measure of each interior angle of one regular hexagon.

Example Finding the Number of Sides of a Regular Polygon

The measure of an interior angle of a regular polygon is 144°. Find the number of sides of this polygon.

The angles that are adjacent to the interior angles of a convex polygon are the

__of the polygon.

Theorem Polygon Exterior Angle-Sum Theorem

The sum of the measures of the exterior angles of a convex polygon, one exterior angle at each vertex, is:

Corollary Regular Polygon Exterior Angle Corollary

The measure of each exterior angle of a regular *n*-gon is:

Example Finding the Measures of Exterior Angles

Find the measure of each exterior angle of a regular pentagon.

Example Finding the Measures of Exterior Angles

Find the value of x. Then find each exterior angle measure.

Tessellation of Regular Polygons

To form a tiling pattern with no gaps or overlaps, we make sure that the sum of the angles where the

polygons meet is ______.

Example Tessellations

Check to see whether this is a tessellation by finding the sum of the numbered angles in the equilateral triangles.

Section 10.2 Areas of Triangles and Quadrilaterals with a Review of Perimeter

Objectives

- 1. Find Areas of Squares, Rectangles, Parallelograms, and Triangles.
- 2. Find Areas of Trapezoids, Rhombuses, and Kites.

Vocabulary

- base of a parallelogram
- height of a parallelogram
- base of a triangle
- height of a triangle
- height of a trapezoid

Postulate Area Congruence Postulate

If...

Then...

Postulate Area Addition Postulate

The area of a region is _____

Postulate Area of a Square

The area of a square is

Theorem Area of a Rectangle

The area of a rectangle is

Theorem Area of a Parallelogram

The area of a parallelogram is

Theorem Area of a triangle

The area of a triangle is

Example Finding the Area of a Parallelogram

What is the area of each parallelogram?

a.

Example Finding the Area of a Triangle

To make two triangular sails like the ones shown, how many square feet of material are needed?

Example Finding the Perimeter of an Irregular Room Find the perimeter of the room.

Example Finding the Area of an Irregular Room Find the area.

Theorem Area of a Trapezoid

The area of a trapezoid is

(In this theorem, the height of the trapezoid is the _____

Theorem Area of a Rhombus or a Kite

The area of a rhombus or a kite is

Example Area of a Trapezoid

What is the approximate area of the state of Nevada? Round to the nearest hundred square miles.

Example Finding the Area Using a Right Triangle Find the area of the trapezoid *PQRS*.

Example Finding the Area of a Kite

Section 10.3 Areas of Regular Polygons

Objectives	Vocabulary
1. Find the Area of a Regular Polygon.	center of a regular polygonradius of a regular polygon
	apothemcentral angle of a regular polygon

We can circumscribe a circle about any regular polygon. (Remember, "circumscribe" means "draw a circle through all of the vertices.")

Example Finding Angle Measures

The figure at the right is a regular pentagon with radii and an apothem drawn. What is the measure of each numbered angle?

Theorem Area of a Regular Polygon

The area of a regular polygon is

Example Finding the Area of a Regular Polygon

What is the area of the regular decagon?

mm

Example Using Special Triangles to Find the Area of a Regular Polygon

A honeycomb is made up of regular hexagonal cells. The length of a side of a cell is 3 mm. What is the area of a cell? Round to the nearest square mm.

Section 10.4 Perimeters and Areas of Similar Figures

Objectives

Vocabulary

- 1. Find the Perimeters and Areas of Similar Figures.
- scale factor

Theorem Perimeters and Areas of Similar Figures If the scale factor of two similar figures is $\frac{a}{h}$, then

- 1. the ratio of their perimeters is
- 2. the ratio of their areas is

Example Finding Scale Factor, Side Lengths, and Ratios of Similar Polygons Figure $ABCDE \sim \text{figure } FGHIJ$.

a. Find the scale factor of the larger figure to the smaller figure.

- b. Given the scale factor, find *AB*.
- c. Find the ratio of the perimeters of the large figure to the smaller figure.
- d. Find the ratio of the areas of the larger figure to the smaller figure.

Example Finding Areas Using Similar Figures

Multiple Choice The area of the smaller regular pentagon is about 27.5 cm². Choose the best approximation for the area of the larger regular pentagon.

- a. 11cm²
- b. 69cm²
- c. 172cm²
- d. 275cm²

Example Finding Perimeter Ratios

The triangles are similar. What is the scale factor? What is the ratio of their perimeters?

Section 10.6 Areas of Circles and Sectors

Objectives 1. Find the Areas of Circles, Sectors, and Segments of Circles. Vocabulary • sector of a circle • segment of a circle

Theorem Area of a Circle

The area of a circle is

Example Using the Area of a Circle Formula

a. Find the exact area, and then a two decimal-place approximation.

b. Find the exact radius, and then a two decimal-place approximation.

Example Going from Circumference of a Circle to Its Area

An artist has been commissioned to construct a circular table from a "slice" of a tree. The customer would like the table surface to be about 400 square inches in area. The artist found a tree with a nice circular girth (circumference) of 72 inches. Before the tree is cut down, let's find the area of a slice of this tree, rounded to two decimal places.

A ______ of a circle is a region bounded by an arc of the circle and the two radii to the arc's endpoints. We name a sector using one arc endpoint, the center of the circle, and other arc endpoint.

Theorem Area of a Sector of a Circle

The area of a sector of a circle is

Example Finding the Area of a Sector of a Circle

Find the exact area of sector *GPH*. Then give a two decimal-place approximation.

A part of a circle bounded by an arc and the segment of joining its endpoints is a ______ of the circle.

To find the area of a segment, compute:

Example Finding the Area of a Segment of a Circle

Find the area of the shaded segment shown at the right. Round your answer to the nearest tenth.

