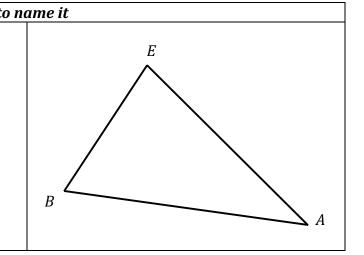
Chapter 4: Things To Know

Section 4.1 Types of Triangles

Objectives

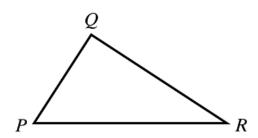
- 1. Learn the Vocabulary of Triangles.
- 2. Classify Triangles by Angles and Sides.
- 3. Find Angle Measures of Triangles.


Vocabulary

- triangle
- vertex
- sides of a triangle
- adjacent sides
- opposite side and angle
- included side and angle
- acute triangle
- obtuse triangle
- equiangular triangle
- right triangle
- scalene triangle
- isosceles triangle
- equilateral triangle
- · interior angle
- exterior angle
- corollary

The noncollinear points are called ______.

The segments joining the points are called ______.


	How to
This shape is	
Points A, B, and E are	·
Point <i>A</i> is a	
Point <i>B</i> is a	
Point <i>E</i> is a	
\overline{AB} , \overline{BE} , and \overline{AE} are the	-

Example Identifying Parts of a Triangle

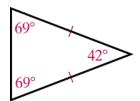
Given ΔPQR :

- a. Which angle is opposite \overline{PQ} ?
- b. Which side is opposite $\angle Q$?
- c. Which side is included between $\angle P$ and $\angle R$?
- d. Which angle is included between \overline{QR} and \overline{PR} ?

Classifying Triangles by Angles		
Туре	Description	Example

Classifying Triangles by Sides		
Туре	Description	Example
	•	

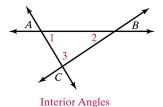
Example Classifying Triangles

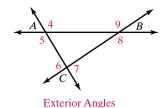

Classify each triangle by its angles and sides. Use the most specific name.

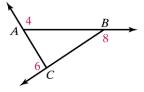
a.

No sides are equal

b.

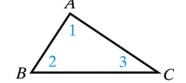


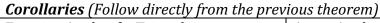

Definitions


We call the 3 original angles of the triangle the ______ angles of the triangle.

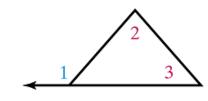
The angles that are adjacent to the interior angles are the _____ angles of the triangle. There are two exterior angles associated with each interior angle of a triangle, but since they are

congruent to each other, we only show one exterior angle for each interior angle.

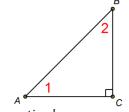



Exterior Angles Usually Shown

Triangle Angle-Sum Theorem

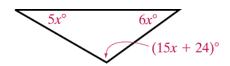

The sum of the measures of the interior angles of a triangle is ______.

 $m \angle 1 + m \angle 2 + m \angle 3 =$ _____.



Exterior Angle of a Triangle

Write the equation here:


Acute Angles of a Right Triangle

Write the equation here:

Example Finding Angle Measures

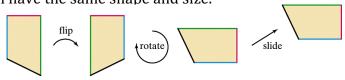
Use the Triangle Angle-Sum Theorem to find the measure of each angle in the given triangle.

Example Finding Angle Measures

Use the Exterior Angle of a Triangle Corollary to find the measure of the exterior angle and the nonadjacent angle shown.

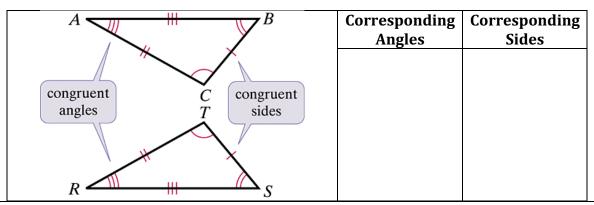
Section 4.2 Congruent Figures

Objectives

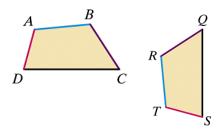

- 1. Identify Corresponding Parts in Congruent Figures.
- 2. Prove Triangles are Congruent.

Vocabulary

- congruent figures
- corresponding sides
- corresponding angles


have the exact same shape and size.

A ______, a _____, or a ______ does not affect whether figures are congruent because they still have the same shape and size.


When figures are congruent, their ______ are congruent, and their

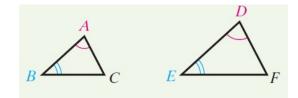
_____ are congruent.

Example Naming Congruent Parts

For the two figures, we are given that $ABCD \cong TRQS$

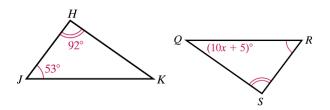
Turn over and rotate

Finished Cat


Example Using Congruent Triangles to find Angle Measures

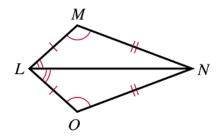
In the process of foling an origami cat, two congruent triangles are formed. Given that $\triangle ABC \cong \triangle AEF$, find $m \angle F$.

Theorem Third Angles Theorem


If ...

then...

In my humble opinion, this is one of the more ridiculous facts to be given the title of "Theorem" in this book. Don't focus on memorizing the name of it—just keep in mind that if two triangles have two angles congruent, of course the third angle has to be congruent, because both sets of angles have to add up to 180° .


Example Using the Third Angles Theorem Find the value of x.

Example Proving Triangles are Congruent

Given: $\overline{LM} \cong \overline{LO}$, $\overline{MN} \cong \overline{ON}$, $\angle M \cong \angle O$, $\angle MLN \cong \angle OLN$

Prove: $\Delta LMN \cong \Delta LON$

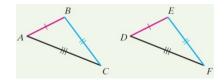
Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Section 4.3 Congruent Triangles by SSS and SAS

Objectives

1. Prove Two Triangles are Congruent Using

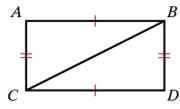
Vocabulary


- Side-Side-Side (SSS)
- Side-Angle-Side (SAS)

In this section and the next, you'll learn some postulates and theorems that will be super useful for the types of proofs you did at the end of Section 4.2—Triangle Congruence Proofs!

Side-Side (SSS) Postulate

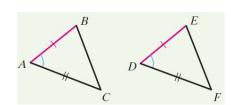
If...


Then...

Example Proving Triangles are Congruent

the SSS and SAS Postulates.

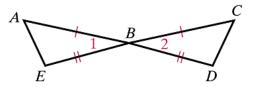
Given: $\overline{AB} \cong \overline{CD}$, $\overline{AC} \cong \overline{BD}$ **Prove:** $\Delta ABC \cong \Delta DCB$



Statements	Reasons
1.	1.
2.	2.
3.	3.

Side-Angle-Side (SAS) Postulate

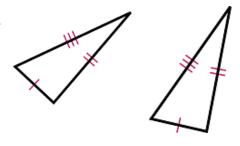
If...


Then...

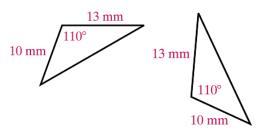
Example Proving Triangles are Congruent

Given: The figure with congruent segments marked.

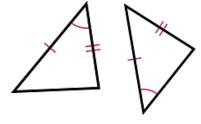
Prove: $\triangle ABE \cong \triangle CBD$

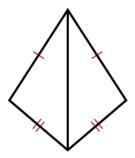


Statements	Reasons
1.	1.
2.	2.
3.	3.


Example Identifying Congruent Triangles

Can we use SSS or SAS to prove the triangles are congruent? If there is not enough information to prove by SSS or SAS, then write "not enough information" and explain why.


a.


b.

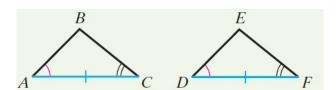
c.

d.

Section 4.4 Congruent Triangles by ASA and AAS

Objectives

- 1. Prove Two Triangles Are Congruent Using the ASA Postulate and the AAS Theorem.
- 2. Identify When to Use SSS, SAS, ASA, or AAS to Prove Triangles Congruent.


Vocabulary

- Angle-Side-Angle (ASA)
- Angle-Angle-Side (AAS)

Angle-Side-Angle (ASA) Postulate

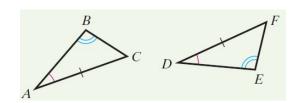
If...

Then...

Example Identifying ASA

Multiple Choice: Choose two triangles that are congruent by the ASA Postulate. Explain why.

b.

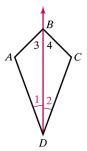

d.

Angle-Angle-Side (AAS) Theorem

If...

Then...

Why is AAS called a Theorem and not a Postulate?

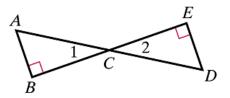

Because we can prove that it's true using the ASA Postulate:

Since $\angle A \cong \angle D$ and $\angle B \cong \angle E$, that means that $\angle C \cong \angle F$. (By the Third Angle Theorem!)

Example Proving Triangles are Congruent

Given: \overline{DB} bisects $\angle ABC$, $\angle 1 \cong \angle 2$

Prove: $\Delta DAB \cong \Delta DCB$

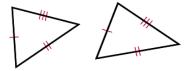


Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

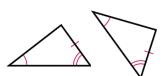
Example Proving Triangles are Congruent

Given: $\angle B$ and $\angle E$ are right angles, C is the midpoint of \overline{AD} .

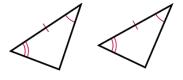
Prove: $\triangle ABC \cong \triangle DEC$

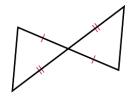


Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.


Example Identifying SSS, SAS, ASA, and AAS

Each pair of triangles is congruent by SSS, SAS, ASA, or AAS. Identify the postulate or theorem that confirms their congruence.


а


b.

c

d.

Section 4.5 Proofs Using Congruent Triangles

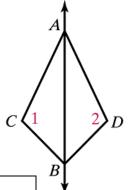
Objectives

- 1. Use Triangle Congruence and Corresponding Parts of Congruent Triangles to Prove that Parts of Two Triangles Are Congruent.
- 2. Prove Two Triangles are Congruent Using Other Congruent Triangles.

Vocabulary

• cpoctac (<u>C</u>orresponding <u>P</u>arts <u>O</u>f <u>C</u>ongruent <u>T</u>riangles <u>A</u>re <u>C</u>ongruent)

Often we are interested in proving that two lengths, or angles, or other types of measures are the same—i.e. that two geometric figures are congruent. If we can prove that two triangles are congruent, then we can prove that corresponding parts of those congruent triangles are congruent. We abbreviate this with the following acronym.

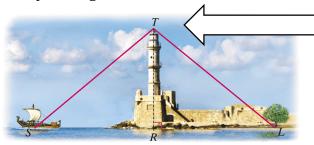

$cpoctac = \underline{C}$ or responding \underline{P} arts \underline{O} f \underline{C} on gruent \underline{T} riangles \underline{A} re \underline{C} on gruent

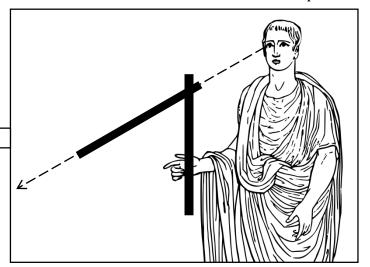
Example Using Congruent Triangles

Given: \overline{AB} bisects $\angle CAD$

 \overline{BA} bisects $\angle CBD$

Prove: $\angle 1 \cong \angle 2$



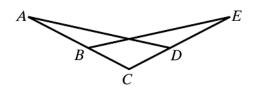

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Example Proving Triangle Parts Congruent to Measure Distance

Thales, a Greek philosopher, is said to have developed a method to measure the distance to a ship at sea.

He made a compass by nailing two sticks together. Standing on top of a tower, *T*, he would hold one stick vertical and tilt the other until he could see the ship *S* along the line of the tilted stick.

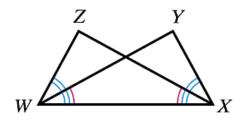
With this compass setting, he would find a landmark L on the shore along the line of the tilted stick. How far would the ship be from the base of the tower?


Given: $\angle TRS$ and $\angle TRL$ are right angles.

 $\angle RTS \cong \angle RTL$

Prove: $\overline{RS} \cong \overline{RL}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.


Example Identifying Common Parts of Overlapping Triangles What common angle do $\triangle ACD$ and $\triangle ECB$ share?

Example Using Common Parts of Overlapping Triangles

Given: $\angle ZXW \cong \angle YWX$, $\angle ZWX \cong \angle YXW$

Prove: $\overline{ZW} \cong \overline{YX}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Section 4.6 Isosceles, Equilateral, and Right Triangles

Objectives

- 1. Use Properties of Isosceles and Equilateral Triangles.
- 2. Use Properties of Right Triangles.

Vocabulary

- legs of an isosceles triangle
- base of an isosceles triangle
- vertex angle of an isosceles triangle
- base angles of an isosceles triangle
- hypotenuse
- legs of a right triangle

Isosceles Triangles

If an isosceles triangle has exactly two congruent sides, then these two sides are its ______.

The third side is the _____.

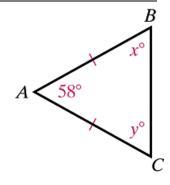
The angle opposite the base is the _____

leg leg base base angles

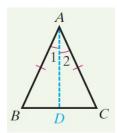
The other two angles adjacent to the base are the _____

Isosceles Base Angles Theorem

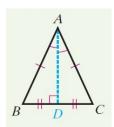
If...


Then...

vertex

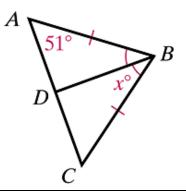

Example Using Isosceles Triangles

Use the figure and markings to find the values of *x* and *y*.

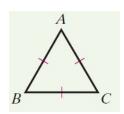


Theorem Perpendicular Bisector of the Base of an Isosceles Triangle

If...



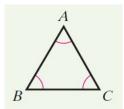
Then...


Example Using Isosceles Triangles

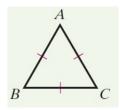
Use the given figure to find the value of x.

Corollary If Equilateral than Equiangular Triangle

If...

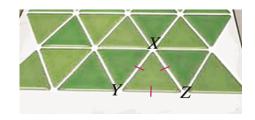


Then...

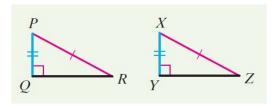


Corollary If Equiangular then Equilateral Triangle

If...



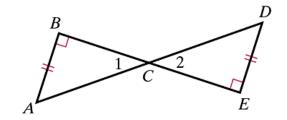
Then...


Example Using Equilateral Triangles

Each triangle in the floor pattern shown is an equilateral triangle. Find the measure of each angle in ΔXYZ .

Hypotenuse-Leg (H-L) Theorem

If... Then...


Chapter 4 Things To Know

Example Using the H-L Theorem

Given: \overline{BE} bisects \overline{AD} at \overline{C} $\overline{AB} \perp \overline{BC}$, $\overline{DE} \perp \overline{EC}$

 $\overline{AB}\cong \overline{DE}$

Prove: $\triangle ABC \cong \triangle DEC$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.