Chapter 6: Things To Know

Section 6.1 Polygons

<u> </u>	011 0.1	1 (<i>J</i> 1 y	<u>gu</u>	1
Objec	tives				
1	Dofino	าท	A N	ำห	

- Define and Name Polygons.
- 2. Find the Sum of the Measures of the Interior Angles of a Quadrilateral.

Vocabulary

- polygon
- vertex
- n-gon
- concave polygon
- convex polygon
- quadrilateral
- regular polygon
- diagonal
- equilateral polygon
- equiangular polygon

Polygon Definition

A figure is a polygon if it meets the following three conditions:

1.

2.

3.

The endpoints of the sides of a polygon are called the ______(Singular form: _____).

Polygons must be named by listing all of the vertices *in order*.

Write two different ways of naming the polygon to the right below:

Example Identifying Polygons

Identify the polygons. If not a polygon, state why.

Chapter 6 Things To Know

Number of Sides	Name of Polygon
3	
4	
5	
6	
7	
8	
9	
10	
12	
n	

Definitions			\	
In general, a polyg	gon with n sides is called an $_{ extstyle -}$	 		
	if no line o vithin the interior of the poly			
Otherwise, a poly	gon is	 >		

Example Identifying Convex and Concave Polygons. Identify the polygons. If not a polygon, state why.

a.

b.

c.

	c.			
	^tı	nı	1	on
.,				.,,,

An ______ is a polygon with all sides congruent.

An ______ is a polygon with all angles congruent.

A ______ is a polygon that is both equilateral and equiangular.

Example Identifying Regular Polygons

Determine if each polygon is regular or not. Explain your reasoning.

b.

c.

Definition

A segment joining to nonconsecutive vertices of a convex polygon is called a ______ of the polygon.

Theorem Interior Angle Sum of a Convex Quadrilateral

The sum of the measures of the interior angles of a convex quadrilateral is ______.

$$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 =$$

Example Solve for x

Find x, and then the measures of angles *C* and *D*.

Section 6.2 Parallelograms

Objectives

- 1. Use Relationships Among Sides and Angles of Parallelograms.
- 2. Use Relationships Among Consecutive Angles and Diagonals of Parallelograms.

Vocabulary

- parallelogram
- opposite sides
- opposite angles
- consecutive angles

Definition			
A of opposite sides parallel.	is a quadrilateral with	both pairs	
In a parallelogram	do no	ot share a vertex, and	d
	do not share a side.	AB and CD are opposite sides.	$ \begin{array}{c} C \\ $
Theorem Opposite Sides of a Paral	lelogram		
If		$A \xrightarrow{B} C$	$A = \begin{bmatrix} B & & & C \\ & & & & \\ & & & & \\ D & & & & \\ D & & & &$
Then			

Theorem Opposite Angles of a Parallelogram

If...

 $A \xrightarrow{B} C$

Then...

Example Proof of the Opposite Sides Theorem

Given: \overrightarrow{ABCD} Prove: $\overrightarrow{AB} \cong \overrightarrow{CD}$ and $\overrightarrow{BC} \cong \overrightarrow{DA}$

Statements	Reasons	
1.	1.	
2.	2.	
3.	3.	
4.	4.	
5.	5.	
6.	6.	
7.	7.	_

Definition

Angles of a polygon that share a side are ______.

In the diagram, $\angle A$ and $\angle B$ are consecutive angles because they share side \overline{AB} .

Theorem Consecutive Angles of a Parallelogram

If...

Then...

Theorem Diagonals of a Parallelogram

If...

Then...

Example Using Consecutive Angles

Multiple Choice: What is $m \angle P$ in $\Box PQRS$?

a. 26°

b. 64°

c. 116°

d. 126°

Example Using Algebra to Find Lengths

Solve a system of linear equations to find the values of x and y in $\neg KLMN$. What are KM and LN?

Theorem Multiple Parallel Lines and Transversals

If...

Then...

Example Using Parallel Lines and Transversals

In the figure, $AE \parallel BF \parallel CG \parallel DH$, AB = BC = CD = 2 and EF = 25. What is EH?

Section 6.3 Proving that a Quadrilateral is a Parallelogram

Objectives

- Determine Whether a Quadrilateral is a Parallelogram.
- 2. Use Coordinate Geometry with Parallelograms.

Vocabulary

No new vocabulary

Theorem Converse of Opposite Sides Theorem

If...

Then...

Theorem Converse of Opposite Angles Theorem

If...

Then...

Theorem Converse of Consecutive Angles Theorem

If...

Then...

Example Finding Values of Variables in Parallelogram For what value of *y* must *PQRS* be a parallelogram?

Theorem Converse of the Diagonals Theorem

If...

Then...

Theorem Quadrilateral as a Parallelogram

If...

Then...

Example Deciding Whether a Quadrilateral is a Parallelogram

Can you prove that the quadrilateral is a parallelogram based on the given information? Explain why or why not.

Example Identifying Parallelograms

A truck sits on the platform of a vehicle lift. Two moving arms raise the platform until a mechanic can fit underneath. Why will the truck always remain parallel to the ground as it is lifted?

Example Showing that a Quadrilateral is a Parallelogram

Show that a quadrilateral with vertices A(2,6), B(9,4), C(10,-1), and D(3,1) is a parallelogram. Read all three solution methods and choose your favorite. Take notes on only one method below.

Section 6.4 Rhombuses, Rectangles, and Squares

Objectives

- 1. Define and Classify Special Types of Parallelograms.
- 2. Use Properties of Diagonals of Rhombuses, Rectangles, and Squares.
- 3. Use Properties of Diagonals to Form Rhombuses, Rectangles, and Squares.

Vocabulary

- rhombus
- rectangle
- square

Special Parallelograms

- A ______ is a parallelogram with four congruent sides.
- A ______ is a parallelogram with four right angles.
- A ______ is a parallelogram with four congruent sides and four right angles.

Example Using Properties of Special Parallelograms

The figure shown is a rhombus.

- a. Find the value of x.
- b. Find the measure of each side.

Quadrilaterals Venn Diagram

Theorem Quadrilaterals Biconditionals

A quadrilateral is a parallelogram if and only if...

- •
- •
- •
- •

Example Identifying Special Parallelograms

Identify each parallelogram as a rhombus, a rectangle, or a square. Be as precise as possible.

Theorem Rhombus Diagonal/Perpendicular Theorem

A parallelogram is a rhombus if and only if...

Theorem Rhombus Diagonals

A parallelogram is a rhombus if and only if...

 $\angle 1 \cong \angle 2$ $\angle 3 \cong \angle 4$ $\angle 5 \cong \angle 6$ $\angle 7 \cong \angle 8$

Theorem Rectangle Diagonals

A parallelogram is a rhombus if and only if...

Example Finding Diagonal Length

Multiple Choice: In rectangle *RSBF*, SF = 2x + 15 and RB = 5x - 12.

What is the length of the diagonal?

b. 9

c. 18

d. 33

Example Finding Angle Measures

What are the measures of the numbered angles in rhombus *ABCD*?

Example Using Properties of Special Parallelograms

For what value of x is $\neg ABCD$ a rhombus?

Section 6.5 Trapezoids and Kites

Objectives

- 1. Use Properties of Trapezoids.
- 2. Use Properties of Kites.

Vocabulary

- trapezoid
- base
- leg
- base angle
- isosceles trapezoid
- midsegment of a trapezoid
- kite

Special Quadrilatorals

Special Quaul nater als			
A	is a quadrilateral with exactly one pair of parallel sides.		
The parallel sides of a trapezoid	are called		leg base angles leg
The nonparallel sides are called			base
The two angles that share a base A trapezoid has two pairs of base			·
An		is a trapezo	id with legs that are congruent.
Theorem Base Angles of an Isos	celes Trapezoid		
If Then			R
			$T \longrightarrow P$
Theorem Isosceles Trapezoid			
If			R A
Then			T Δ_{P}
Theorem Diagonals of an Isosce	les Trapezoid		
A trapezoid is isosceles if and on	ly if		B

Example Finding Angle Measures in Trapezoids

CDEF is an isosceles trapezoid. Calculate $m \angle D$, $m \angle E$, and $m \angle F$.

Theorem Trapezoid Midsegments

The midsegment of a trapezoid is ______

If a quadrilateral is a trapezoid, then...

(1)

(2)

(1) $\overline{MN} \parallel \overline{TP}, \overline{MN} \parallel \overline{RA}$, and

(2)
$$MN = \frac{1}{2}(TP + RA)$$

Example Using the Midsegment of a Trapezoid

Segment QR is the midsegment of trapezoid LMNP. What is x?

Special Quadrilaterals

A ______ is a quadrilateral with two pairs of consecutive sides congruent and no opposite sides congruent.

Theorem Diagonals of a Kite

If...

Then...

Theorem Opposite Angles of a Kite

If...

Then...

Example Finding Angle Measures in Kites Quadrilateral DEFG is a kite. What are $m \angle 1$, $m \angle 2$, and $m \angle 3$?

