MAT-222-840

Team Problems for Chapter 10

Name: _	Solutions
Date:	

Problem #1: Divide and Conquer

In this problem, we will sketch out a proof of the Polygon Interior-Angle Sum Theorem. That theorem says that the sum of the measures of the interior angles of a convex *n*-gon is:

180(n-2)

We will start with the fact that the sum of the interior angles of a triangle is 180 degrees.

In each of the polygons below, draw diagonals from the vertex A to any vertices with which A does not share an edge. For example, in the quadrilateral, draw the diagonal \overline{AC} . This should divide the polynomial into a number of triangles. Count up the triangles and complete the table.

Polygon	Number of Sides	Number of triangles	Total number of degrees in triangles
1 2	4	2	180 (2)
3 2	5	3	[80(3)
4 3 2	6	4	180(4)
4 3 2	7	5	180(5)

$$\frac{n-2}{\text{# of triangles}}$$
 ×180 degrees

Problem #2: Why the Area Formula for Circles Makes Sense

1. Consider the pictures below, where the circle is cut into 4, 8, and 16 pie-pieces.

- 1. Visualize cutting the circle into more and more smaller pie pieces and rearranging them as above.
 - What shape would the rearranged circle become more and more like? Draw it below.

- What would the lengths of the sides of this shape be? r
- What would the area of this shape be? $A = bh = \pi r \cdot r = \pi r^2$

Using your answers to part 4, explain why it makes sense that a circle of radius r units has area πr^2 square units, given that the circumference of a circle of radius r is $2\pi r$.

Since we were just moving area around, the area of the original circle must be TTr^2 as well.

Problem #3: Similar Areas Problem-Solving

1. To plan the renovation of an art gallery, a 1/10 scale model of the Pre-Revolution French Landscape Painting Wing was made. The warm ochre paint that the design company chose to paint the walls of the model cost \$3.10. If the company uses the same paint, at the same cost, to paint the walls of the gallery, how much will it cost?

Paint
$$\rightarrow$$
 Area \rightarrow scale is $\left(\frac{1}{10}\right)^2 = \frac{1}{100}$

$$\frac{1}{100} = \frac{3.10}{x}$$

$$\chi = $310$$

2. Mrs. Henderson's neighbor just had his 1-acre property fenced in an attractive 6 foot picket for \$7500. If Mrs. Henderson hires the same company to fence her 3-acre property with the same type of fence, how much will it cost her? Assume Mrs. Henderson's property and her neighbor's property are similar in shape.

$$\frac{1}{3}$$
 compares acres (area)

To compare perimeter, use

 $\sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$

$$\frac{1}{\sqrt{3}} = \frac{$7500}{\times}$$

$$\times = $7500 \sqrt{3} \approx $12990.38$$

Problem #4: Determining Areas

Determine each of the shaded areas below.

$$A = \frac{1}{2}bh = \frac{1}{2}(3)(16) = 24 \text{ units}^2$$

$$A = \frac{1}{2}bh = \frac{1}{2}(5)(9) = 22.5 \text{ units}^2$$

Problem #5: Why the Area formula for Kites makes sense

Consider the kite ABCD below with diagonals d_1 and d_2 drawn in. The diagonals have been divided at their point of intersection into lengths such that $d_1 = w + y$ and $d_2 = x + z$.

1. Find the area of ABCD by breaking it up into four triangles and adding those areas together.

17: $A = \frac{1}{2}yx$ 2. Starting with the kite area formula $A = \frac{1}{2}d_1d_2$, make the substitutions $d_1 = w + y$ and $d_2 = w + y$ x + z and simplify by expanding (multiplying out).

$$A = \frac{1}{2}(\omega_{ty})(x+2)$$

$$A = \frac{1}{2}(\omega_{x} + \omega_{z} + y_{x} + y_{z})$$

$$A = \frac{1}{2}(\omega_{x} + \frac{1}{2}\omega_{z} + \frac{1}{2}y_{x} + \frac{1}{2}y_{z}$$

3. Verify that your area formulas in Step 1 and Step 2 are the same.

4. Explain why this method would also verify the area formula for rhombuses is true.

The same area formula A=id,d, is used for rhombuses and diagonals likewise break a rhombus into 4 right triangles.