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Divergence Theorem/Stokes’ Theorem (16.9, 16.8) 
 
Last time: we talked about surface integrals (generally), and the field version represents a flow through 
the surface. We mostly talked about flow through a single surface, generally not a close surface. 
 
In this section, we are going to talk about flow through a closed surface. We don’t care about the 
properties of the field, but we do care that the surface is closed, so the surface represents the closure of 
some volume of space. 
 
We are going to convert the flow through the closed surface into a volume integral. 
 
We are going to assume a positive orientation: the flow is outward relative to the surface.  Because we 
are not doing the individual surfaces by hand, we don’t have to calculate the orientation of the surfaces 
when applying the Divergence theorem. 
 
Example where Divergence Theorem can be applied: 

𝐹(𝑥, 𝑦, 𝑧) = 〈3𝑥, 𝑥𝑦, 2𝑥𝑧〉 
The region (volume) is the cube bounded by the planes: 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1 
 
Integral #1: plane 𝑥 = 0. Step1: plug x=0 into the field. Step 2: if the field is non-zero, then integrate in 
the remaining variables (in this case the surface is square with bounds 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1. Step3: 
Find your normal vector pointing outward: 𝑛 = 〈−1,0,0〉. 
Integral #2: plane 𝑥 = 1., Step 1: plug in x=1 into the field. Step 2: set up with same limits as before. 
Step 3: the normal vector is 𝑛 = 〈1,0,0〉.  Here, you’d integrate 3, over y and z (a square). 
Integral #3: plane y=0. Step 1: plug in y=0. Step 2: set up integral to integrate over x and z, = 0, 𝑥 =
1, 𝑧 = 0, 𝑧 = 1. Step 3: dot the normal vector 𝑛 = 〈0, −1,0〉. 
Integral #4: plane y=1. Step 1: plug in y=1 into field. Step 2: set up integral to integrate over the square 
in x and z. Step 3: dot the field with the normal vector 𝑛 = 〈0,1,0〉. 
Integral #5: plane z=0. Step 1: plug in z=0 into field. Step 2: set up integral in x and y. Step 3: the normal 
vector 𝑛 = 〈0,0, −1〉, and dot with the field. 
Integral #6: plane z=1. Step 1: plug in z=1 into the field. Step 2: step up the integral to integrate over the 
square in x and y. Step 3: dot the field with the normal vector 𝑛 = 〈0,0,1〉. 

Finally, add up the results of all the integrals…. I think 3 +
1

2
+ 1 =

9

2
. 

 
Divergence Theorem: 
 

∬ �⃗� ∙ 𝑑𝑆
𝑆

= ∯ �⃗� ∙ 𝑑𝑆 = ∭ 𝑑𝑖𝑣 �⃗�𝑑𝑉
𝑉

= ∭ ∇ ∙ �⃗�𝑑𝑉
𝑉

 

 
If the flow is incompressible, then the integral will be zero (the same amount is flowing in as flowing 
out). 
If the result is positive, then there is source inside the volume (enclosed surface): more coming out than 
is going in. 
If the result is negative, then there is a sink inside the volume (enclose surface): more going in than is 
coming out. 



 
𝐹(𝑥, 𝑦, 𝑧) = 〈3𝑥, 𝑥𝑦, 2𝑥𝑧〉 

The region (volume) is the cube bounded by the planes: 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1 
 

∬ 𝐹 ∙ 𝑑𝑆
𝑆

= ∬ 𝐹 ∙ 𝑑𝑆1
𝑆1

+ ∬ 𝐹 ∙ 𝑑𝑆2
𝑆2

+ ∬ 𝐹 ∙ 𝑑𝑆3
𝑆3

+ ∬ 𝐹 ∙ 𝑑𝑆4
𝑆4

+ ∬ 𝐹 ∙ 𝑑𝑆5
𝑆5

+ ∬ 𝐹 ∙ 𝑑𝑆6
𝑆6

 

 

= ∭ ∇ ∙ 𝐹𝑑𝑉
𝑉

= ∭ 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 ∙

𝑉

〈3𝑥, 𝑥𝑦, 2𝑥𝑧〉𝑑𝑉 = ∭ (3 + 𝑥 + 2𝑥)𝑑𝑉
𝑉

 

 

= ∫ ∫ ∫ (3 + 3𝑥)
1

0

𝑑𝑧𝑑𝑦𝑑𝑥
1

0

1

0

 

 

= ∫ ∫ (3 + 3𝑥)𝑧|0
1𝑑𝑦𝑑𝑥

1

0

1

0

= ∫ ∫ (3 + 3𝑥)𝑑𝑦𝑑𝑥
1

0

=
1

0

∫ (3 + 3𝑥)𝑑𝑥
1

0

= 3𝑥 +
3

2
𝑥2|

0

1

= 3 +
3

2
=

9

2
 

 
 
Example. 
 

𝐹(𝑥, 𝑦, 𝑧) = 〈cos 𝑧 + 𝑥𝑦2, 𝑥𝑒−𝑧, sin 𝑦 + 𝑥2𝑧〉 
S is the surface of the solid bounded by the paraboloid 𝑧 = 𝑥2 + 𝑦2 and the plane 𝑧 = 4. 
 
Old way: two integrals: one on the paraboloid, and on the plane 𝑧 = 4. The normal vector for the top 
plane would be 𝑛 = 〈0,0,1〉. Dot that with the field where z=4 is plugged in. Integrating in 𝑥 and 𝑦, but 
intersection with the plane is a circle of radius 2: 4 = 𝑥2 + 𝑦2. 

∫ ∫ (sin(𝑟 sin 𝜃) + 4𝑟2 cos2 𝜃)𝑟𝑑𝑟𝑑𝜃
2

0

2𝜋

0

+ 𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 

Other integral: 𝐺(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧, ∇𝐺 = 〈2𝑥, 2𝑦, −1〉 

∬ 〈cos(𝑥2 + 𝑦2) + 𝑥𝑦2, 𝑥𝑒−(𝑥2+𝑦2), sin 𝑦 + 𝑥2(𝑥2 + 𝑦2)〉 ∙
𝑆

〈2𝑥, 2𝑦, −1〉𝑑𝐴 

 
This is awful. The Divergence Theorem not only reduces the number of integrals to compute, but the 
functions are easier to set up, and because we are taking derivatives, the functions we are integrating 
often get easier. 
 
The new way: 

𝑑𝑖𝑣 𝐹 = ∇ ∙ 𝐹 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 ∙ 〈cos 𝑧 + 𝑥𝑦2, 𝑥𝑒−𝑧, sin 𝑦 + 𝑥2𝑧〉 = 𝑦2 + 0 + 𝑥2 = 𝑥2 + 𝑦2 = 𝑟2 

 

∫ ∫ ∫ (𝑟2)𝑟𝑑𝑧𝑑𝑟𝑑𝜃
4

𝑟2

2

0

2𝜋

0

= ∫ ∫ ∫ (𝑟3)𝑑𝑧𝑑𝑟𝑑𝜃
4

𝑟2

2

0

2𝜋

0

= ∫ ∫ 𝑟2(4 − 𝑟2)𝑑𝑟𝑑𝜃
2

0

2𝜋

0

= 

∫ ∫ (4𝑟2 − 𝑟4)𝑑𝑟𝑑𝜃
2

0

2𝜋

0

= ∫
4

3
𝑟3 −

1

5
𝑟5|

0

1

𝑑𝜃
2𝜋

0

= (
4

3
−

1

5
) 2𝜋 =

34𝜋

15
 

 
 
 



Stokes’ Theorem (16.8) 
 
A way of looking at line integrals through the lens of surfaces. Curves in space can be defined by the 
intersection of surfaces. 
 
The purpose of this theorem is to convert a line integral in one dimension into a two-dimensional 
surface integral. 
 

∬ (∇ × �⃗�) ∙ 𝑑𝑆
𝑆

= ∫ �⃗� ∙ 𝑑𝑟
𝐶

 

 
Assumes the same positive orientation around the curve (counterclockwise/area on the left) that we 
used with Green’s Theorem. 
 
Example. 
 

𝐹(𝑥, 𝑦, 𝑧) = 〈𝑥2𝑧2, 𝑦2𝑧2, 𝑥𝑦𝑧〉 
S is the part of the paraboloid 𝑧 = 𝑥2 + 𝑦2 that lies inside the cylinder 𝑥2 + 𝑦2 = 4. 
(what is the curve of intersection: 𝑟(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡 , 4〉) 
Oriented upward (z is positive). 
 

∇ × 𝐹 = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2𝑧2 𝑥2𝑦2 𝑥𝑦𝑧

|| = (𝑥𝑧 − 0)𝑖 − (𝑦𝑧 − 2𝑥2𝑧)𝑗 + (2𝑥𝑦2 − 0)𝑘 = 

 
〈𝑥𝑧, 2𝑥2𝑧 − 𝑦𝑧, 2𝑥𝑦2〉 

 
Normal vector to the surface: 

𝐺(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 𝑦2 
∇𝐺 = 〈−2𝑥, −2𝑦, 1〉 

 

∬ 〈𝑥𝑧, 2𝑥2𝑧 − 𝑦𝑧, 2𝑥𝑦2〉 ∙ 〈−2𝑥, −2𝑦, 1〉
𝑅

𝑑𝐴 ∬ −2𝑥2𝑧 − 2𝑥2𝑦𝑧 + 2𝑦2𝑧 + 2𝑥𝑦2𝑑𝐴
𝑅

 

 

∬ (−2𝑥2(𝑥2 + 𝑦2) − 2𝑥2𝑦(𝑥2 + 𝑦2) + 2𝑦2(𝑥2 + 𝑦2) + 2𝑥𝑦2)𝑑𝐴
𝑅

 

 

∫ ∫ (−2𝑟4 cos2 𝜃 − 2𝑟5 cos2 𝜃 sin 𝜃 + 2𝑟4 sin2 𝜃 + 2𝑟3 cos 𝜃 sin2 𝜃)
2

0

𝑟𝑑𝑟𝑑𝜃
2𝜋

0

 

 

= ∫ ∫ −2𝑟5 cos 2𝜃 − 2𝑟6 cos2 𝜃 sin 𝜃 + 2𝑟4 cos 𝜃 sin2 𝜃 𝑑𝑟𝑑𝜃
2

0

2𝜋

0

 

 

= ∫ −
1

3
𝑟6 cos 2𝜃 −

2

7
𝑟7 cos2 𝜃 sin 𝜃 +

2

5
𝑟5 cos 𝜃 sin2 𝜃|

2𝜋

0 0

2

𝑑𝜃 = 



 

∫ −
64

3
cos 2𝜃 −

256

7
cos2 𝜃 sin 𝜃 +

64

5
cos 𝜃 sin2 𝜃 𝑑𝜃

2𝜋

0

= 

 

−
32

3
sin 2𝜃 +

256

21
cos3 𝜃 +

64

15
sin3 𝜃|

0

2𝜋

= 0 

 
 
 
Unless the problem says specifically to apply Stokes’ theorem, it is okay to apply Green’s Theorem to an 
equivalent curve. 
 

𝑧 = 4 − 𝑥2 − 𝑦2, 𝑧 = 0 
Surface in the xy-plane had a normal vector of 𝑛 = 〈0,0, ±1〉. 
Choose, when the problem is less specific, your surface wisely: pick the one that needs the least amount 
of math. 
 
Next time: we’ll do more Stokes’ examples, and then review for the Exam #3 (Thursday). 
 


