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Triple Integrals (15.7, 15.8, 15.9) 
 
Like double integrals, but we are using three variables instead of 2. 
Instead of 𝑑𝐴, we use 𝑑𝑉 
 

𝑑𝐴 = 𝑑𝑦𝑑𝑥 = 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 
𝑑𝑉 = 𝑑𝑧𝑑𝑦𝑑𝑥 = 𝑑𝑧𝑑𝑥𝑑𝑦 = 𝑑𝑦𝑑𝑧𝑑𝑥 = 𝑑𝑦𝑑𝑥𝑑𝑧 = 𝑑𝑥𝑑𝑧𝑑𝑦 = 𝑑𝑥𝑑𝑦𝑑𝑧 

 
Inside integral can have variables in the limits as long we are not integrating at that step, and haven’t 
integrated before. The outer one can only be constants. 
 

∫ ∫ ∫ 𝑑𝑧
𝐺(𝑥,𝑦)

𝐹(𝑥,𝑦)

𝑑𝑦
𝑔(𝑥)

𝑓(𝑥)

𝑑𝑥
𝑏

𝑎

 

 

∫ ∫ ∫ 𝑑𝑥
𝐺(𝑦,𝑧)

𝐹(𝑦,𝑧)

𝑑𝑧
𝑔(𝑦)

𝑓(𝑦)

𝑑𝑦
𝑏

𝑎

 

And so forth. 
 

∭ 𝑑𝑉
𝑄

 = volume 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑄

 = 4D volume, if f is a density function, we could think as the total mass; if f is a 

probability density function, then integrating produces the total probability of the region. 
 
Example. 

∫ ∫ ∫ 𝑥2 sin 𝑦 𝑑𝑦
𝑥𝑧

0

𝑑𝑧
𝑥

0

𝑑𝑥
√𝜋

0

 

 
 

𝑟𝑒𝑔𝑖𝑜𝑛: 𝑦 = 0, 𝑦 = 𝑥𝑧, 𝑧 = 0, 𝑧 = 𝑥, 𝑥 = 0, 𝑥 = √𝜋 
 

∫ ∫ 𝑥2
𝑥

0

(− cos 𝑦)|
√𝜋

0 𝑦=0

𝑦=𝑥𝑧

𝑑𝑧𝑑𝑥 = ∫ ∫ −𝑥2 cos𝑥𝑧 + 𝑥2𝑑𝑧𝑑𝑥
𝑥

0

√𝜋

0

 

 

∫ −𝑥 sin𝑥𝑧 + 𝑥2𝑧|𝑧=0
𝑧=𝑥

√𝜋

0

𝑑𝑥 = ∫ −𝑥 sin𝑥2 + 𝑥3𝑑𝑥
√𝜋

0

 

 

1

2
cos𝑥2 +

𝑥4

4
|
0

√𝜋

= −
1

2
+
𝜋2

4
−
1

2
=
𝜋2

4
− 1 

 
Example. 

∭
𝑧

𝑥2 + 𝑧2
𝑑𝑉

𝑄

 



𝑄 = {(𝑥, 𝑦, 𝑧)|1 ≤ 𝑦 ≤ 4, 𝑦 ≤ 𝑧 ≤ 4,0 ≤ 𝑥 ≤ 𝑧} 
 

∫ ∫ ∫
𝑧

𝑥2 + 𝑧2
𝑑𝑥

𝑧

0

4

𝑦

𝑑𝑧
4

1

𝑑𝑦 

 
Start with inverse tangent. 
 
Example. 
 

∭6𝑥𝑦𝑑𝑉

𝑄

 

Region: lies under the plane 𝑧 = 1 + 𝑥 + 𝑦 and above the region in the xy-plane (z=0) bounded by the 

curves 𝑦 = √𝑥, 𝑦 = 0, 𝑥 = 1. 
 

∫ ∫ ∫ 6𝑥𝑦𝑑𝑧𝑑𝑦𝑑𝑥
1+𝑥+𝑦

0

√𝑥

0

1

0

 

 
Example. 
 

∭𝑧𝑑𝑉

𝑄

 

Region: bounded by the cylinder 𝑦2 + 𝑧2 = 9 and the planes 𝑥 = 0, 𝑦 = 3𝑥 → 𝑥 =
𝑦

3
, 𝑧 = 0 

 
(one option is to do a change of variables: swapping variables for each other in order to re-orient the 
surfaces so that they are easier to visualize or graph in a program—if you do though, you must do the 
same transformation on all the variables in the entire problem, including the function to be integrated.) 
 
Suppose I swapped x with z. 

Region: 𝑦2 + 𝑥2 = 9, 𝑧 = 0, 𝑦 = 3𝑧, 𝑥 = 0,∭ 𝑥𝑑𝑉
𝑄

 

 

∫ ∫ ∫ 𝑧
𝑦/3

0

√9−𝑦2

0

3

0

𝑑𝑥𝑑𝑧𝑑𝑦 

 
Example. 

∭𝑥𝑑𝑉

𝑄

 

Region: bounded by the paraboloid 𝑥 = 4𝑦2 + 4𝑧2, 𝑥 = 4 
 
Equivalent to: 

∭𝑧𝑑𝑉

𝑄

 



Region: bounded by the paraboloid 𝑧 = 4𝑦2 + 4𝑥2, 𝑧 = 4 
 

∫ ∫ ∫ 𝑧𝑑𝑧𝑑𝑦
4

4𝑦2+4𝑥2

√1−𝑥2

−√1−𝑥2

1

−1

𝑑𝑥 

 
Intersect: 4 = 4𝑦2 + 4𝑥2 → 𝑥2 + 𝑦2 = 1 
 
 
Recall that cylindrical is basically just polar + z 
Limits for the z integral can be swapped into polar algebraically, as can any functions to be integrated. 
Only the x and y integrals need to switched graphically. 
 

4𝑦2 + 4𝑥2 = 4(𝑥2 + 𝑦2) = 4𝑟2 
 

∫ ∫ ∫ 𝑧𝑟𝑑𝑧𝑑𝑟𝑑𝜃
4

4𝑟2

1

0

2𝜋

0

 

 
𝑑𝑉 in cylindrical is essentially 𝑑𝑧𝑑𝐴 = 𝑑𝑧(𝑟𝑑𝑟𝑑𝜃) = 𝑟𝑑𝑧𝑑𝑟𝑑𝜃 
 
Paraboloids, cones, anything in polar (planar regions defined by polar graphs or circles), sometimes 
spheres (depends on what they are intersecting) usually are decent in cylindrical. 
 
Hyperboloids, hyperbolic paraboloids may be better in cylindrical than in rectangular. 
 
We’ll see later, that the combination of cones and spheres are usually great in spherical. 
 
Example. 
 

∭𝑑𝑉

𝑄

 

 
Region: between the planes 𝑧 = 0, 𝑧 = 𝑥 + 𝑦 + 5, bonded by the cylinders 𝑥2 + 𝑦2 = 4, 𝑥2 + 𝑦2 = 9. 
 

𝑟 = 2, 𝑟 = 3,0 ≤ 𝜃 ≤ 2𝜋, 𝑧 = 0, 𝑧 = 𝑟 cos 𝜃 + 𝑟 sin 𝜃 + 5 
 
 

∫ ∫ ∫ 𝑟𝑑𝑧𝑑𝑟
𝑟 cos𝜃+𝑟 sin𝜃+5

0

3

2

2𝜋

0

𝑑𝜃 

 
Example. 
Find the volume bounded by 𝑧 = 𝑥2 + 𝑦2, 𝑧 = 36 − 3𝑥2 − 3𝑦2 
 

𝑥2 + 𝑦2 = 36 − 3𝑥2 − 3𝑦2 
4𝑥2 + 4𝑦2 = 36 
𝑥2 + 𝑦2 = 9 



∫ ∫ ∫ 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
36−3𝑟2

𝑟2

3

0

2𝜋

0

 

 
Example. 
 

∫ ∫ ∫ 𝑥𝑧𝑑𝑧
2

√𝑥2+𝑦2
𝑑𝑥

√4−𝑦2

−√4−𝑦2
𝑑𝑦

2

−2

 

 

∫ ∫ ∫ (𝑟 cos 𝜃)𝑧
2

𝑟

2

0

2𝜋

0

𝑟𝑑𝑧𝑑𝑟𝑑𝜃 

 
 
Spherical 𝑑𝑉 = 𝜌2 sin𝜙 𝑑𝜌𝑑𝜙𝑑𝜃 
 
When we transform from rectangular to spherical, all the limits of the integrals have to be transformed 
graphically. Only the function to be integrated can be swapped out algebraically.  
 
For next class to review for the exam: 
Pick some problems you’d like me to do for you/with you. 
 
 


