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Tangents 
Tangents and Normal vectors of space curves (13.2,13.3) 
Tangent Planes, Normal Vectors to surfaces, Directional Derivatives (14.6) 
 
Space curves in 2D and in 3D 
 
Define the tangent to a curve in space. 
 

�⃗� (𝑡) =
𝑟 ′(𝑡)

‖𝑟 ′(𝑡)‖
 

The definition of the unit tangent vector. 
The tangent line can be constructed without making the vector a unit vector, but we will need the unit 
vector to construct the normal vector (unit), and the binormal vector.  These three vectors will form a 
basis for the 3D space that moves along the curve with the particle. 
 

𝑟(𝑡) = 〈1 + 𝑡3, 𝑡𝑒−𝑡, sin 2𝑡〉 
 

𝑟′(𝑡) = 〈3𝑡2, 𝑒−𝑡 − 𝑡𝑒−𝑡, 2 cos 2𝑡〉 
 

𝑇(𝑡) =
〈3𝑡2, 𝑒−𝑡 − 𝑡𝑒−𝑡, 2 cos 2𝑡〉

√9𝑡4 + (𝑒−𝑡 − 𝑡𝑒−𝑡)2 + 4cos2 2𝑡
=

〈3𝑡2, 𝑒−𝑡 − 𝑡𝑒−𝑡, 2 cos 2𝑡〉

√9𝑡4 + 𝑒−2𝑡(1 − 𝑡)2 + 4cos2 2𝑡
 

 

=
〈3𝑡2, 𝑒−𝑡 − 𝑡𝑒−𝑡, 2 cos2𝑡〉

√9𝑡4 + 𝑒−2𝑡(1 − 2𝑡 + 𝑡2) + 4 cos2 2𝑡
 

 
Most space curves look awful as a unit tangent vector. 
 
Example of a helix. 
 

𝑟(𝑡) = 〈2 cos 3𝑡 , 2 sin 3𝑡 , 5𝑡〉 
 

𝑟′(𝑡) = 〈−6 sin 3𝑡 , 6 cos 3𝑡 , 5〉 
 

𝑇(𝑡) =
〈−6 sin3𝑡 , 6 cos 3𝑡 , 5〉

√36 sin2 3𝑡 + 36 cos2 3𝑡 + 25
=

〈−6sin3𝑡 , 6 cos 3𝑡 , 5〉

√36(sin2 3𝑡 + cos2 3𝑡) + 25
 

=
〈−6sin3𝑡 , 6 cos 3𝑡 , 5〉

√36 + 25
=

〈−6 sin3𝑡 , 6 cos3𝑡 , 5〉

√61
= 〈−

6

√61
sin 3𝑡 ,

6

√61
cos 3𝑡 ,

5

√61
〉 

 
 

What is the equation of the tangent line on the helix at 𝑡 =
𝜋

4
 

 

Find the point on the curve: 〈−
2

√2
,

2

√2
,
5𝜋

4
〉. 

Find the tangent vector: 〈−
12

√122
, −

12

√122
,

5

√61
〉 



The equation of the tangent line 𝑔(𝑡) = 〈−
12

√122
𝑡 −

2

√2
, −

12

√122
𝑡 +

2

√2
,

5

√61
𝑡 +

5𝜋

4
〉 

 
Unit normal vector is the second component of our traveling coordinate system 
Normal points in a direction perpendicular to the tangent vector. The normal vector either points 
toward the center of the curvature, or it away from the center of curvature. The principal normal vector 
(here) is the normal vector pointing toward the inside of the curve (in a circle, this would point toward 
the center) 
 

�⃗⃗� (𝑡) =
�⃗� ′(𝑡)

‖�⃗� ′(𝑡)‖
 

 
 

𝑇(𝑡) = 〈−
6

√61
sin 3𝑡 ,

6

√61
cos 3𝑡 ,

5

√61
〉 

 

𝑇′(𝑡) = 〈−
18

√61
cos 3𝑡 , −

18

√61
sin3𝑡 , 0〉 

 

𝑁(𝑡) =

〈−
18

√61
cos 3𝑡 , −

18

√61
sin 3𝑡 , 0〉

√324
61 cos2 3𝑡 +

324
61 sin2 3𝑡

=

〈−
18

√61
cos 3𝑡 , −

18

√61
sin3𝑡 , 0〉

√324
61

 

 

=

〈−
18

√61
cos 3𝑡 , −

18

√61
sin 3𝑡 , 0〉

18

√61

=
√61

18
〈−

18

√61
cos 3𝑡 , −

18

√61
sin 3𝑡 , 0〉 = 〈− cos 3𝑡 , − sin3𝑡 , 0〉 

 
This is a unit vector. 
 
The third component is called the binormal vector because it is perpendicular to both the tangent vector 
and the normal vector. 
 

𝐵(𝑡) = 𝑇(𝑡) × 𝑁(𝑡) 
 
 

|

𝑖 𝑗 𝑘

−
6

√61
sin 3𝑡

6

√61
cos 3𝑡

5

√61
− cos3𝑡 − sin3𝑡 0

| = (
5

√61
sin3𝑡) 𝑖 − (

5

√61
cos3𝑡) 𝑗 + (

6

√61
sin2 3𝑡 +

6

√61
cos2 3𝑡) 𝑘 

 

= 〈
5

√61
sin 3𝑡 , −

5

√61
cos3𝑡 ,

6

√61
〉 

 
Binormal is always already a unit vector if you use the unit tangent vector and the unit normal vector to 
find it. 
 



For 2D curves: if your unit tangent vector is of the form 〈𝑥(𝑡), 𝑦(𝑡)〉, then the unit normal vector will 
either have the form 〈−𝑦(𝑡), 𝑥(𝑡)〉 or 〈𝑦(𝑡), −𝑥(𝑡)〉. What you don’t know in advance is which of these 
is the principal normal vector. 
 
Tangents for surfaces. 
 
Start with directional derivatives. 
Our partial derivatives for a surface 𝑧 = 𝑓(𝑥, 𝑦), told us the way that x was changing when y was held 
constant, or how y was changing if x was held constant. 
 
Find the gradient of the surface: ∇𝑓 = 〈𝑓𝑥, 𝑓𝑦〉, and we going to need the direction in which we are 

heading, 𝑢 = 〈cos 𝜃 , sin 𝜃〉 or any other unit vector. 
 

𝐷𝑢 = ∇𝑓 ∙ 𝑢 
 

Find the directional derivative for the function 𝑓(𝑥, 𝑦) = 𝑒𝑥 sin 𝑦 at the point (0,
𝜋

3
) in the direction of 

𝑣 = 〈−6,8〉. 
 

∇𝑓 = 〈𝑒𝑥 sin 𝑦 , 𝑒𝑥 cos 𝑦〉 

∇𝑓 (0,
𝜋

3
) = 〈

√3

2
,
1

2
〉 

 

Find 𝑢 for the direction. ‖𝑣‖ = √36 + 64 = √100 = 10, so 𝑢 = 〈−
6

10
,

8

10
〉 = 〈−

3

5
,
4

5
〉 

 

𝐷𝑢 = 〈
√3

2
,
1

2
〉 ∙ 〈−

3

5
,
4

5
〉 =

√3

2
(−

3

5
) +

1

2
(
4

5
) = −

3√3

10
+

4

10
=

4 − 3√3

10
≈ −0.1196 

 
Example in 3D. 
 

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦, 𝑓𝑧〉 

 
𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑒𝑦 + 𝑦𝑒𝑧 + 𝑧𝑒𝑥, at the point (0,0,0) and in the direction 𝑣 = 〈5,1,−2〉. 
 

∇𝑓 = 〈𝑒𝑦 + 𝑧𝑒𝑥, 𝑥𝑒𝑦 + 𝑒𝑧, 𝑦𝑒𝑧 + 𝑒𝑥〉 
∇𝑓(0,0,0) = 〈1,1,1〉 

 

‖𝑣‖ = √25 + 1 + 4 = √30 

𝑢 = 〈
5

√30
,

1

√30
,−

2

√30
〉 

 

𝐷𝑢 = 〈1,1,1〉 ∙ 〈
5

√30
,

1

√30
,−

2

√30
〉 =

5

√30
+

1

√30
−

2

√30
=

4

√30
 

 
The gradient always points in the direction of maximum increase. Amount of that maximum increase is 
the magnitude of the gradient at the point, ‖∇𝑓‖. 
 
And the negative of the gradient always points in the direction of the maximum decrease, −∇𝑓. 



 
Tangent planes. 
Curves have tangent lines, but surfaces have tangent surfaces (planes). 
 
Tangent planes use a slightly different gradient than does the directional derivative. To orient our 
tangent plane in three-dimensions, we’ll need a three-dimensional vector, even though the surface is a 
function of only x and y. 𝑓(𝑥, 𝑦) = 𝑧. 
 
Construct a three-variable function from our two-variable function. 
 

𝑧 = 𝑓(𝑥, 𝑦) 
Move everything to one side of the equation, instead of 0, set the result equal to 𝐹(𝑥, 𝑦, 𝑧). 
 
𝑓(𝑥, 𝑦) = 3𝑦2 − 2𝑥2 + 𝑥, at the point (2, −1,−3) 
 

𝑧 = 3𝑦2 − 2𝑥2 + 𝑥 
𝐹(𝑥, 𝑦, 𝑧) = 3𝑦2 − 2𝑥2 + 𝑥 − 𝑧 

 
The vector ∇𝐹 is a vector which is perpendicular (normal) to the surface at the point where it is 
evaluated. 
 

∇𝐹 = 〈−4𝑥 + 1,6𝑦,−1〉 
 

∇𝐹(2,−1,−3) = 〈−7,−6,−1〉 
 

−7(𝑥 − 2) − 6(𝑦 + 1) − 1(𝑧 + 3) = 0 
 
Equation of the tangent plane.  Could solve for z if we wanted. 
 
Example. 
 

𝑥2 + 𝑦2 + 𝑧2 = 9 
 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 9 
 

∇𝐹 = 〈2𝑥, 2𝑦, 2𝑧〉 
 

@(1,2,2) 
 
Normal vector for plane ∇𝐹(1,22) = 〈2,4,4〉 
 
Tangent plane equation: 

2(𝑥 − 1) + 4(𝑦 − 2) + 4(𝑧 − 2) = 0 
 
If the surface is expressed in cylindrical or spherical coordinates: convert back to rectangular to find the 
tangent plane (or use the appropriate gradient formula in the Del Notation handout). 
 
What about parametric surface form? (16.6) 



 
How do we get a vector perpendicular to a parametric surface? 
 
Key: the partial derivatives for a parametric surface are vectors in the plane. 
 
𝑟(𝑢, 𝑣) is the surface, 𝑟𝑢 and 𝑟𝑣 are vectors in plane. So we need a vector perpendicular to both 𝑟𝑢 and 
𝑟𝑣. So we find that by doing the cross product of the two vectors. 
 
Example. 

𝑟(𝑢, 𝑣) = 〈𝑢2, 2𝑢 sin𝑣 , 𝑢 cos 𝑣〉, 𝑢 = 1, 𝑣 = 0 
 
(If you are given a point in 3D space instead of values of u and v, set your vector components equal to 
the point components, and solve the set of simultaneous equations.) 
 
Point on the surface 𝑟(1,0) = 〈1,0,1〉 
 

𝑟𝑢 = 〈2𝑢, 2 sin𝑣 , cos 𝑣〉 
𝑟𝑣 = 〈0,2𝑢 cos𝑣 ,−𝑢 sin𝑣〉 

 

𝑁(𝑢, 𝑣) = 𝑟𝑢 × 𝑟𝑣 = |
𝑖 𝑗 𝑘

2𝑢 2 sin𝑣 cos 𝑣
0 2𝑢 cos 𝑣 −𝑢 sin𝑣

| = 

 
(−2𝑢 sin2 𝑣 − 2𝑢 cos2 𝑣)𝑖 − (−2𝑢2 sin𝑣 − 0)𝑗 + (4𝑢2 cos 𝑣 − 0)𝑘 = 

 
〈−2𝑢, 2𝑢2 sin 𝑣 , 4𝑢2 cos 𝑣〉 

 
Normal vector to the surface at the point (1,0,1) 
 

𝑁 = 〈−2,0,4〉 
 
Tangent plane equation is 

−2(𝑥 − 1) + 0(𝑦 − 0) + 4(𝑧 − 1) = 0 
  
 
Tangents and Normals handout. It covers tangents for curves, tangent planes in rectangular coordinates 
and tangent planes from parameterized surfaces. 
 
You can construct a “normal line” to the surface. When you find the normal vector to the surface, make 
a line of it using the normal vector as the direction, and the point on the plane as the point on the line 
(𝑥0, 𝑦0, 𝑧0). 
 
 


