Instructions: Show all work. Use exact answers unless specifically asked to round. Be sure to complete all parts of each question.

1. Find the directional derivative of the function $f(x,y) = x \sin y - e^{xy}$ at the point $\left(1,\frac{\pi}{2}\right)$, in the direction of $\vec{u} = 5\hat{\imath} - 8\hat{\jmath}$. 11 ull = 125+ W = 189

$$\frac{5(\frac{21}{21} - \frac{72e^{72}}{\sqrt{89}})}{\sqrt{89}} + \frac{2.8e^{72}}{2.\sqrt{89}} = \frac{10 + (16 - 5\pi)e^{72}}{2\sqrt{89}} \approx 0.6044$$

2. Find the equation of the tangent plane for $f(x,y) = x^2y - xy^3$, at the point (1,-2).

3. Find the equation of the tangent plane for the parametric surface given by $\vec{r}(u,v) = u \cos v \hat{i} + i \sin \theta$ $u \sin v \hat{j} + uv^3 \hat{k}$ at the point $(-3,0,-3\pi^3)$. 11v3= -3n3

$$u \sin v \hat{j} + uv^3 k$$
 at the point $(-3,0,-3\pi^3)$.
 $u = \cos v \hat{j} + \sin v \hat{j} + v^3 \hat{k}$

$$U \sin V = 0$$

 $V = \pi_1 - \pi_1 0$, etc.
 $U \cos V = -3$
 $\cos \pi = -1$ $V = \pi$
 $U = 3$ $U = 3$
 $\cos (-iT) = -1$