MTH 263, Homework #6, Summer 2023 Name

Instructions: Write your work up neatly and attach to this page. Record your final answers (only) directly on this page if they are short; if too long indicate which page of the work the answer is on and mark it clearly. Use exact values unless specifically asked to round.

- 1. Complete two interactions of Newton's method by hand for the function $f(x) = x^3 3$ with starting condition $x_0 = 1.4$.
- 2. Use Newton's method (and technology) to final all the zeros of the function to within 0.001 (there may be more than one zero to find).
 - a. $f(x) = x^3 + 4$ b. $h(x) = x - 2\sqrt{x+1}$ c. $a(x) = x^3 - \cos x$ d. $g(x) = x^5 + x - 1$ e. $y = x - 3 + \ln x$
- 3. Explain why Newton's method might fail.
- 4. Find the indefinite integrals.

a.
$$\int x + 7 \, dx$$

b.
$$\int (1 + 3t)t^2 dt$$

c.
$$\int \sec y \, (\tan y - \sec y) dy$$

d.
$$\int x - \frac{5}{x} dx$$

e.
$$\int \sqrt[4]{x^3} + 1 \, dx$$

f.
$$\int t^2 - \cos t \, dt$$

g.
$$\int 2x - 4^x dx$$

- 5. Following the example of the proof of the formula for the $\sum_{i=1}^{n} i^3$, complete a similar proof for
 - $\sum_{i=1}^{n} i^2$. [Hint: it's a two-step proof. First show that the proposed formula works for some "base" value of *i*, and second, show that if it works for n, it also works for n+1 (find the sum of n+1 two

different ways and show that they are the same).]

6. Use the limit process to evaluate the following integrals. Show all steps.

a.
$$\int_{0}^{1} (x^{2} + x) dx$$

b. $\int_{1}^{4} (64 - x^{3}) dx$
c. $\int_{-1}^{5} (3x + 4) dx$