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Double Integrals and Volume 
 
Finish the fundamental theorem of line integrals: example. 
 

∫2𝑥𝑒−𝑦𝑑𝑥 + (2𝑦 − 𝑥2𝑒−𝑦)𝑑𝑦
𝐶

 

On any path from point (1,0) to (2,1). (this implying that the field is conservative) 
 

�⃗�(𝑥, 𝑦) = 〈2𝑥𝑒−𝑦, 2𝑦 − 𝑥2𝑒−𝑦〉 
 

∫ 2𝑥𝑒−𝑦𝑑𝑥 = 𝑥2𝑒−𝑦 + 𝑔(𝑦) 

 

∫ 2𝑦 − 𝑥2𝑒−𝑦𝑑𝑦 = 𝑦2 + 𝑥2𝑒−𝑦 + ℎ(𝑥) 

 
𝑓(𝑥, 𝑦) = 𝑥2𝑒−𝑦 + 𝑦2 

 

∫2𝑥𝑒−𝑦𝑑𝑥 + (2𝑦 − 𝑥2𝑒−𝑦)𝑑𝑦
𝐶

= 𝑓(2,1) − 𝑓(1,0) = 4𝑒−1 + 1 − (1 + 0) =
4

𝑒
 

 
Double Integrals 
Single integrals in Calc 1 represented the area under a curve. Double integrals going to represent the 
volume under a surface. 
 
Recall from deriving the one variable integral, we split up x interval into several smaller segments and 
constructed an estimate with rectangles. The width of the smaller segments was the width of the 
rectangle, and the height of the rectangle was the height of the function (right-hand end, the left-hand 
end, or the midpoint, etc.) The idea was that as we took more rectangles, the estimate would get better 
until, in the limit, the answer was exact. 
 
In the volume case, we have a surface (z=f(x,y)) that represents the height of the function hovering over 
some region in the xy-plane. We are dividing up both x and y into smaller segments (m for x direction 
and n for the y direction), what we get is little rectangles in the plane, the volume underneath the 
surface is given by the width (in x) and the depth (in y) and the height (in z) which is estimated from the 
function (at some point inside the rectangle on the plane). The estimate of the volume is based on a 

rectangular box, volume for each segment is 𝑓(𝑥𝑖, 𝑦𝑗)Δ𝑥Δ𝑦 = ℎ𝑤𝑙. 

Then add up the rectangular boxes to get the estimate for the total volume. 
 
The function we are integrating represents the surface in the z-direction, as a function of x and y.  
The limits of integration in x and y are the bounds on the region in the plane. 
 
Example. 
Find the area in the plane bounded by the functions 𝑦 = 2𝑥2, 𝑦 = 1 + 𝑥2 
Red curve is 𝑦 = 2𝑥2 and blue is 𝑦 = 1 + 𝑥2. Intersections are at -1, 1 



 
 

∫ ∫ 𝑓(𝑥, 𝑦)
𝑓(𝑥)

𝑔(𝑥)

𝑑𝐴
𝑏

𝑎

= ∫ ∫ 𝑓(𝑥, 𝑦)
𝑓(𝑥)

𝑔(𝑥)

𝑑𝑦𝑑𝑥
𝑏

𝑎

= ∫ ∫ 𝑓(𝑥, 𝑦)
𝑟(𝑦)

𝑠(𝑦)

𝑑𝑥𝑑𝑦
𝑑

𝑐

 

 
 

∫ ∫ 𝑓(𝑥, 𝑦)
𝑓(𝑥)

𝑔(𝑥)

𝑑𝑦𝑑𝑥
𝑏

𝑎

= ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑓(𝑥)

𝑔(𝑥)

] 𝑑𝑥
𝑏

𝑎

 

 
𝑎, 𝑏 are the limits in x, and 𝑓(𝑥), 𝑔(𝑥) are the bounds on the functions for the region, the top and 
bottom functions. 
 
If we want to use a double integral to calculate just the area, we set f(x,y)=1. 
 

Area: ∫ ∫ 1 𝑑𝑦𝑑𝑥
𝑓(𝑥)

𝑔(𝑥)

𝑏

𝑎
 

 
Area: 

∫ ∫ 1 𝑑𝑦 𝑑𝑥
1+𝑥2

2𝑥2

1

−1

= ∫ [𝑦]
2𝑥2
1+𝑥2

𝑑𝑥
1

−1

= ∫ 1 + 𝑥2 − (2𝑥2)𝑑𝑥
1

−1

= ∫ 1 − 𝑥2 𝑑𝑥
1

−1

= 2 ∫ 1 − 𝑥2𝑑𝑥
1

0

= 

 

2(𝑥 −
𝑥3

3
|

0

1

= 2 [1 −
1

3
) = 2 (

2

3
) =

4

3
 

 

∫ 𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥
1

−1

=
4

3
 

 
Volume will come when the function is not 1, but some 𝑓(𝑥, 𝑦) 
 
Suppose we want to find the volume of the region under the surface 𝑓(𝑥, 𝑦) = 𝑥 + 2𝑦, above the region 
in the plane bounded by 𝑦 = 2𝑥2, 𝑦 = 1 + 𝑥2. 
 



𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ ∫ 𝑥 + 2𝑦 𝑑𝑦𝑑𝑥
1+𝑥2

2𝑥2

1

−1

 

 

∫ [∫ (𝑥 + 2𝑦)𝑑𝑦
1+𝑥2

2𝑥2
] 𝑑𝑥

1

−1

= ∫ [𝑥𝑦 + 𝑦2]
2𝑥2
1+𝑥2

𝑑𝑥
1

−1

= ∫ 𝑥(1 + 𝑥2) + (1 + 𝑥2)2 − 𝑥(2𝑥2) − (2𝑥2)2𝑑𝑥
1

−1

 

 

= ∫ 𝑥 + 𝑥3 + 1 + 2𝑥2 + 𝑥4 − 2𝑥3 − 4𝑥4𝑑𝑥
1

−1

= ∫ 1 + 𝑥 + 2𝑥2 − 𝑥3 − 3𝑥4 𝑑𝑥
1

−1

= 

 

∫ 1 + 2𝑥2 − 3𝑥4𝑑𝑥
1

−1

+ ∫ 𝑥 − 𝑥3𝑑𝑥
1

−1

= 2 ∫ 1 + 2𝑥2 − 3𝑥4𝑑𝑥
1

0

= 2 [𝑥 +
2𝑥3

3
−

3𝑥5

5
]

0

1

= 2 [1 +
2

3
−

3

5
] 

 
32

15
 

 
To find the average height of the surface on this region, divide the total volume by the area in the plane. 

𝑓̅ =

32
15
4
3

=
32

15
×

3

4
=

8

5
 

 

𝑓̅ =
𝑉

𝐴
=

1

𝐴
∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝐴

𝑓(𝑥)

𝑔(𝑥)

𝑏

𝑎

 

 
Typically way of setting up these double integrals integrate in y first (using the top and bottom functions 
as the limits), and then in x last. If you integrate in x first, the inside functions are the right-hand and left-
hand boundaries (x=f(y)) and the outer limits are constants in y. This is equivalent to integrating in one 
variable with horizontal rectangles instead of vertical ones. 
 
Find the volume under the surface 𝑧 = 𝑥𝑦 above the region in the plane bounded by 𝑦 = 𝑥 − 1,  

𝑦2 = 2𝑥 + 6 
 

y=x-1 becomes x=y+1 



Solve for x in terms of y: 

𝑦2 = 2𝑥 + 6 → 𝑦2 − 6 = 2𝑥 →
𝑦2

2
− 3 = 𝑥 

∫ ∫ 𝑥𝑦 𝑑𝑥𝑑𝑦
𝑦+1

𝑦2

2
−3

4

−2

= ∫ [∫ 𝑥𝑦 𝑑𝑥
𝑦+1

𝑦2

2
−3

] 𝑑𝑦
4

−2

= ∫ [
𝑥2𝑦

2
]

𝑦2

2
−3

𝑦+1

𝑑𝑦
4

−2

=
1

2
∫ (𝑦 + 1)2𝑦 − (

𝑦2

2
− 3)

2

𝑦 𝑑𝑦
4

−2

= 

 
1

2
∫ (𝑦2 + 2𝑦 + 1)𝑦 − (

𝑦4

4
− 3𝑦2 + 9) 𝑦 𝑑𝑦

4

−2

=
1

2
∫ 𝑦3 + 2𝑦2 + 𝑦 −

𝑦5

4
+ 3𝑦3 − 9𝑦 𝑑𝑦

4

−2

= 

 

1

2
∫ −

𝑦5

4
+ 4𝑦3 + 2𝑦2 − 8𝑦 𝑑𝑦

4

−2

=
1

2
[−

𝑦6

24
+ 𝑦4 +

2

3
𝑦3 − 4𝑦2]

−2

4

= 

 
1

2
[−

512

3
+ 256 +

128

3
− 64 − (−

8

3
+ 16 −

16

3
− 16)] = 36 

 
Switching the order the of integration in a double integral. 
 

∫ ∫
1

𝑦3 + 1
𝑑𝑦𝑑𝑥

2

√𝑥

4

0

 

 
The limits are the boundary in the plane of the region we are integrating over. We need to graph that 

region in order to change the order of integration. The two inside limits are 𝑦 = √𝑥, 𝑦 = 2, and the 
outside limits are 𝑥 = 0, 𝑥 = 4. 
Often, one of the outside limits is “extra” in the sense that it is derived from the intersection of the other 
two curves. 
 

 
𝑦 = √𝑥 → 𝑦2 = 𝑥 

 

∫ ∫
1

𝑦3 + 1
𝑑𝑥𝑑𝑦

𝑦2

0

2

0

= ∫ [
1

𝑦3 + 1
(𝑥)]

0

𝑦2

𝑑𝑦
2

0

= ∫
𝑦2

𝑦3 + 1
𝑑𝑦

2

0

=
1

3
ln(𝑦3 + 1)|

0

2

=
1

3
[ln 9 − ln 1] 

 

=
ln 9

3
 



 

𝑢 = 𝑦3 + 1, 𝑑𝑢 = 3𝑦2𝑑𝑦 →
1

3
𝑑𝑢 = 𝑦2𝑑𝑦  

 

∫
1

𝑢
(

1

3
𝑑𝑢) =

1

3
ln(𝑢) 

 
 
Exam #1 is Monday. 
 
 
 
 
 
 
 
 


