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Surface Area (15.6) 
Green’s Theorem (16.4) 
 
When we found the arclength, we found the magnitude of the tangent vector and integrated that to 
obtain the length of the curve. 
When we go to surface area (one dimension up from that), we also will use the vector that describes the 
derivative (for the tangent plane). The relationship between the magnitude of the derivative vector and 
the measure of the curve/surface is similar. 
 
For the surface are, we are not going to use the gradient of the surface directly, but we will use the 
version of the gradient that we used to find the tangent plane: 
 
Recall: 
Started with a function 𝑓(𝑥, 𝑦) = 𝑧, and we created a 3-variable function from that 𝐹(𝑥, 𝑦, 𝑧) = 𝑧 −
𝑓(𝑥, 𝑦) and then found the gradient of that function F. 
 
Formula for the surface area: 
 

𝐴 = ∫ ∫ ‖∇⃗⃗ 𝐹‖𝑑𝐴
𝑔(𝑥)

ℎ(𝑥)

𝑏

𝑎

 

 
Recall:  

∇𝐹 = 〈−𝑓𝑥, −𝑓𝑦, 1〉 

That makes the integral: 
 

∫ ∫ ‖∇⃗⃗ 𝐹‖𝑑𝐴
𝑔(𝑥)

ℎ(𝑥)

𝑏

𝑎

= ∫ ∫ √[𝑓𝑥]
2 + [𝑓𝑦]

2
+ 1𝑑𝑦𝑑𝑥

𝑔(𝑥)

ℎ(𝑥)

𝑏

𝑎

 

 
𝑓(𝑥, 𝑦) must be an explicit function of x and y, and cannot be implicit. 
 
Example. 
Find the surface area of the part of the surface 𝑧 = 𝑥2 + 2𝑦 that lies above the triangular region in the 
xy-plane with vertices (0,0), (1,0), (1,1). 
 

 



𝐹(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 2𝑦 
∇𝐹 = 〈−2𝑥,−2,1〉 

‖∇𝐹‖ = √4𝑥2 + 4 + 1 = √4𝑥2 + 5 
 

𝐴 = ∫ ∫ √4𝑥2 + 5𝑑𝑦𝑑𝑥
𝑥

0

1

0

= ∫ 𝑦√4𝑥2 + 5|
0

𝑥
𝑑𝑥

1

0

= ∫ 𝑥√4𝑥2 + 5𝑑𝑥
1

0

 

 

𝑢 = 4𝑥2 + 5, 𝑑𝑢 = 8𝑥𝑑𝑥 →
1

8
𝑑𝑢 = 𝑥𝑑𝑥 

 

∫𝑢
1
2 (

1

8
)𝑑𝑢 =

1

8
(
2

3
)𝑢

3
2 

 

1

12
(9

3
2 − 5

3
2) =

27 − 5√5

12
 

 
 
Example. 
Find the area of the part of the paraboloid 𝑧 = 𝑥2 + 𝑦2 that lies under the plane 𝑧 = 9. 
 

𝐹(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 𝑦2 
∇𝐹 = 〈−2𝑥,−2𝑦, 1〉 

‖∇𝐹‖ = √4𝑥2 + 4𝑦2 + 1 = √4(𝑥2 + 𝑦2) + 1 = √4𝑟2 + 1 
 

𝑥2 + 𝑦2 = 9 
Switch to polar: 

𝑟2 = 9, 𝑟 = 3 
 

∫ ∫ √4𝑟2 + 1𝑟𝑑𝑟𝑑𝜃
3

0

2𝜋

0

 

 

𝑢 = 4𝑟2 + 1, 𝑑𝑢 = 8𝑟𝑑𝑟 →
1

8
𝑑𝑢 = 𝑟𝑑𝑟 

 

∫𝑢
1
2 (

1

8
)𝑑𝑢 =

1

8
(
2

3
)𝑢

3
2 

 
1

12
∫ (37

3
2 − 1)𝑑𝜃

2𝜋

0

=
2𝜋

12
(37√37 − 1) =

𝜋

6
(37√37 − 1) 

 
Example.  
Find the area of the top half of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 16. 
 

𝑧 = √16 − 𝑥2 − 𝑦2 

𝐹(𝑥, 𝑦, 𝑧) = 𝑧 − √16 − 𝑥2 − 𝑦2 
 



∇𝐹 = 〈
(
1
2
) (−1)(−2𝑥)

√16 − 𝑥2 − 𝑦2
,
(
1
2
) (−1)(−2𝑦)

√16 − 𝑥2 − 𝑦2
, 1〉 = 〈

𝑥

√16 − 𝑥2 − 𝑦2
,

𝑦

√16 − 𝑥2 − 𝑦2
, 1〉 

 

‖∇𝐹‖ = √
𝑥2

16 − 𝑥2 − 𝑦2
+

𝑦2

16 − 𝑥2 − 𝑦2
+

1(16 − 𝑥2 − 𝑦2)

16 − 𝑥2 − 𝑦2
= √

16

16 − 𝑥2 − 𝑦2
=

4

√16 − 𝑥2 − 𝑦2
 

 
𝑥2 + 𝑦2 = 16 

 

‖∇𝐹‖ =
4

√16 − 𝑟2
 

 
𝑟 = 4 

 

∫ ∫
4

√16 − 𝑟2
𝑟𝑑𝑟𝑑𝜃

4

0

2𝜋

0

 

 

𝑢 = 16 − 𝑟2, 𝑑𝑢 = −2𝑟𝑑𝑟 → −
1

2
𝑑𝑢 = 𝑟𝑑𝑟 

 

∫4(−
1

2
) 𝑢−

1
2𝑑𝑢 = −2(2)𝑢

1
2 = −4√16 − 𝑟2 

 

∫ 16𝑑𝜃
2𝜋

0

= 32𝜋 

 
Surface area of a sphere is 𝑆𝐴 = 4𝜋𝑟2, hemisphere: 𝑆𝐴 = 2𝜋𝑟2 = 2𝜋(42) = 32𝜋 
 
Parametric surfaces: 
 
Want to integrate the magnitude of vector (scaled appropriately) for the normal vector to the surface in 
order to obtain the surface area. 
 
That normal vector is  

𝑟 𝑢 × 𝑟 𝑣  

𝐴 = ∫ ∫‖𝑟 𝑢 × 𝑟 𝑣‖
𝑄

𝑑𝐴 

 
Example. 
Find the area of the surface 𝑟 (𝑢, 𝑣) = 〈2𝑢 sin 𝑣 , 2𝑢 cos 𝑣 , 𝑢2〉 
Over: 0 ≤ 𝑢 ≤ 2, 0 ≤ 𝑣 ≤ 2𝜋 
 

𝑟 𝑢 = 〈2 sin𝑣 , 2 cos 𝑣 , 2𝑢〉 
𝑟 𝑣 = 〈2𝑢 cos 𝑣 ,−2𝑢 sin 𝑣 , 0〉 

 



𝑟 𝑢 × 𝑟 𝑣 = |
𝑖̂ 𝑗̂ 𝑘̂

2 sin𝑣 2 cos 𝑣 2𝑢
2𝑢 cos 𝑣 −2𝑢 sin𝑣 0

| = 〈0 + 4𝑢2 sin𝑣 ,−(0 − 4𝑢2 cos 𝑣),−4𝑢 sin2 𝑣 − 4𝑢 cos2 𝑣〉 

 
= 〈4𝑢2 sin 𝑣 , 4𝑢2 cos 𝑣 ,−4𝑢〉 

 

‖𝑟 𝑢 × 𝑟 𝑣‖ = √16𝑢4 sin2 𝑣 + 16𝑢4 cos2 𝑣 + 16𝑢2 = √16𝑢4 + 16𝑢2 = √(16𝑢2)(𝑢2 + 1) = 4𝑢√𝑢2 + 1 
 

∫ ∫ 4𝑢√𝑢2 + 1𝑑𝑢𝑑𝑣
2

0

2𝜋

0

 

 
𝑤 = 𝑢2 + 1, 𝑑𝑤 = 2𝑢𝑑𝑢 

 

∫2𝑤
1
2𝑑𝑤 = 2(

2

3
)𝑤

3
2 =

4

3
(𝑢2 + 1)

3
2 

 

∫
4

3
(5

3
2 − 1)𝑑𝑣

2𝜋

0

=
4(5√5 − 1)

3
(2𝜋) =

8𝜋(5√5 − 1)

3
 

 
Green’s Theorem 
A way of calculating some line integrals using the area of the region they enclose. 
First requirement: the curve must be closed (start and stop at the same place). 
Second “requirement”: the field is not conservative 
Third requirement: the line integral is the vector field version or the differential version 

∫𝐹 ∙ 𝑑𝑟 
𝐶

= ∫𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝑐

 

 
For closed curves you’ll sometime see the integral notation with a circle on the integral. 
 

∮𝑀𝑑𝑥 + 𝑁𝑑𝑦 

This doesn’t change anything, just it just indicates that the path is closed. 
 
Green’s theorem allows us to swap a line integral for an integral over the area of the region enclosed by 
the curve. 
 
It says: 

∮𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ∬(
𝜕𝑁

𝑑𝑥
−

𝜕𝑀

𝑑𝑦
)𝑑𝐴  

 
The bounds on the area are defined by the region enclosed by the curve(s). 
 
What happens if the field is conservative? 
 

There exists a potential function F, such that 𝑀 =
𝜕𝐹

𝑑𝑥
, 𝑁 =

𝜕𝐹

𝑑𝑦
, therefore 

𝜕𝑁

𝑑𝑥
=

𝜕2𝐹

𝜕𝑥𝜕𝑦
,
𝜕𝑀

𝜕𝑦
=

𝜕2𝐹

𝜕𝑦𝜕𝑥
, since the 

mixed partials are the same, the function being integrated over the region is 0, so the integral will be 



zero.  This is consistent with the fundamental theorem of line integrals which says that any line integral 
over a closed curve in a conservative vector field will be zero since the value is independent of path. 
 
This is why we are interested in the cases where the field is not conservative. 
 
Example. 
Evaluate ∮𝑥𝑦𝑑𝑥 + 𝑥2𝑑𝑦  over the rectangle with vertices (0,0), (3,0),(3,1),(0,1) 
 

 
 
If we were to do this by the definition: we would need 4 paths. From (0,0) to (3,0), and then another 
from (3,0) to (3,1), and then another from (3,1) to (0,1) and then finally a fourth from (0,1) to (0,0).  
 
Do all the substitutions, and derivatives and integrate 4 times, and then add everything up. 
 

𝑀 = 𝑥𝑦,𝑁 = 𝑥2 
𝜕𝑁

𝜕𝑥
= 2𝑥,

𝜕𝑀

𝜕𝑦
= 𝑥 

 
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
= 2𝑥 − 𝑥 = 𝑥 

 

∫ ∫ 𝑥𝑑𝑦𝑑𝑥
1

0

3

0

= ∫ 𝑥𝑦|0
1𝑑𝑥

3

0

= ∫ 𝑥𝑑𝑥
3

0

=
1

2
𝑥2|

0

3

=
9

2
 

 
 
What if we wanted to do a line integral over an annulus? 
One complication from this is that paths are not obviously connected, so how do we make it fit into our 
assumptions for green’s theorem? 
 



 
 
A path like this allows us to connect the dots and travel the entire path and still start and stop in the 
same place, this allows us to deal with more complex regions than just solid ones. 
 
Evaluate ∮𝑦2𝑑𝑥 + 3𝑥𝑦𝑑𝑦 where C is the path around the region bounded by the circle of radius 2 and 
the circle of radius 1 in the xy-plane. 
 

𝜕𝑁

𝑑𝑥
= 3𝑦,

𝜕𝑀

𝑑𝑦
= 2𝑦,

𝜕𝑁

𝑑𝑥
−

𝜕𝑀

𝑑𝑦
= 3𝑦 − 2𝑦 = 𝑦 

 

∫ ∫ 𝑟 sin𝜃 𝑟𝑑𝑟𝑑𝜃
2

1

2𝜋

0

= ∫ ∫ 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃
2

1

2𝜋

0

= ∫
1

3
𝑟3|

1

2

sin𝜃 𝑑𝜃
2𝜋

0

=
1

3
(7)∫ sin 𝜃 𝑑𝜃

2𝜋

0

= 

 
7

3
(− cos𝜃|0

2𝜋 =
7

3
(−1 − (−1)) = 0 

 
Example. 

Evaluate ∮4𝑦𝑑𝑥 + 2𝑥𝑑𝑦 where C is the boundary of the ellipse 𝑥2 + 2𝑦2 = 2 →
𝑥2

2
+ 𝑦2 = 1 

 
𝜕𝑁

𝜕𝑥
= 2,

𝜕𝑀

𝜕𝑦
= 4,

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
= 2 − 4 = −2 

 

∬(−2)𝑑𝐴 

 
Actually, the value of the integral is just the area of the region times the constant (if the only function I’m 
integrating is a constant). 
 

−2 × (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒) 
 

𝐴 = 𝜋𝑎𝑏 

𝑎 = √2, 𝑏 = 1, 𝐴 = 𝜋√2 



 

Therefore, my integral is just −2𝜋√2 
 
Example. 

Evaluate ∮(1 − 𝑦3)𝑑𝑥 + (𝑥3 + 𝑒𝑦2
)𝑑𝑦 C is the boundary of the region between the circles 𝑥2 + 𝑦2 = 4, 

𝑥2 + 𝑦2 = 9. 
 

𝜕𝑁

𝜕𝑥
= 3𝑥2,

𝜕𝑀

𝑑𝑦
= −3𝑦2,

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
= 3𝑥2 − (−3𝑦2) = 3𝑥2 + 3𝑦2 = 3𝑟2 

 

∫ ∫ 3𝑟2(𝑟 𝑑𝑟𝑑𝜃)
3

2

2𝜋

0

= ∫ ∫ 3𝑟3 𝑑𝑟𝑑𝜃
3

2

2𝜋

0

 

 
Green’s theorem hints: 
Messy integrals in vector field or differential form that will simplify upon taking a derivative 
Description of the path in terms of the boundary of a region 
 
Next time, surface integrals. 
 
 
 
 
 
 
 
 
 
 
 


