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Divergence Theorem (16.9) 
Stokes’ Theorem (16.8) 
 
The Divergence Theorem: 

∬ 𝐹⃗ ∙ 𝑑𝑆 = ∭ ∇⃗⃗⃗ ∙ 𝐹⃗ 𝑑𝑉 = ∭ 𝑑𝑖𝑣 𝐹⃗ 𝑑𝑉 

 
Does the require that the region bounded by the surface(s) be a closed region. 
 
Example. 

Find the flux of the vector field 𝐹⃗ = 〈𝑧, 𝑦, 𝑥〉 over the unit sphere. 
 

∇⃗⃗⃗ ∙ 𝐹⃗ = 0 + 1 + 0 = 1 

∫ ∫ ∫ (1)𝜌2 sin 𝜙 𝑑𝜌𝑑𝜙𝑑𝜃
1

0

𝜋

0

2𝜋

0

∫ ∫ ∫ (1)𝑑𝑉
1

0

𝜋

0

2𝜋

0

=
4

3
𝜋 

 
Example. 

Evaluate the flux integral where 𝐹⃗ = 〈𝑥𝑦, 𝑦2 + 𝑒𝑥𝑧2
, sin (𝑥𝑦)〉 and S is the surface of the region bounded 

by the parabolic cylinder 𝑧 = 1 − 𝑥2 and the planes z=0, y=0 and 𝑦 + 𝑧 = 2. 
 
To do this using the definition of the flux integral:4 surfaces. We would have to find the normal to the 
surface for each one. Each one would be a double integral, not necessarily great functions, and each 
would be over a different set of variables. 
 
Using the divergence theorem: 

∇ ∙ 𝐹⃗ = 𝑦 + 2𝑦 + 0 = 3𝑦 
 

∫ ∫ ∫ 3𝑦
2−𝑧

0

1−𝑥2

0

𝑑𝑦𝑑𝑧𝑑𝑥
1

−1

=
3

2
∫ ∫ 𝑦2|

1−𝑥2

0

1

−1 0

2−𝑧

𝑑𝑧𝑑𝑥 =
3

2
∫ ∫ 4 − 4𝑧 + 𝑧2

1−𝑥2

0

1

−1

𝑑𝑧𝑑𝑥 = 

 

3

2
∫ 4𝑧 − 2𝑧2 +

1

3
𝑧3|

1

−1 0

1−𝑥2

𝑑𝑥 =
3

2
∫ 4(1 − 𝑥2) − 2(1 − 𝑥2)2 +

1

3
(1 − 𝑥2)3𝑑𝑥

1

−1

= 

 
3

2
∫ 4 − 4𝑥2 − 2(1 − 2𝑥2 + 𝑥4) +

1

3
(1 − 3𝑥2 + 3𝑥4 − 𝑥6)𝑑𝑥

1

−1

= 

 
3

2
∫ 4 − 4𝑥2 − 2 + 4𝑥2 − 2𝑥4 +

1

3
− 𝑥2 + 𝑥4 −

𝑥6

3
𝑑𝑥

1

−1

=
3

2
∫

7

3
− 𝑥2 − 𝑥4 −

𝑥6

3
𝑑𝑥

1

−1

= 

 

3 ∫
7

3
− 𝑥2 − 𝑥4 −

𝑥6

3
𝑑𝑥

1

0

= 3 [
7

3
𝑥 −

1

3
𝑥3 −

1

5
𝑥5 −

𝑥7

21
]

0

1

= 3 [
7

3
−

1

3
−

1

5
−

1

21
] =

184

35
 

 
 



 
Example. 
Find the flux through the surfaces bounding the box enclosed by the planes x=0, x=2, y=0, y=4, z=0, z=3 

for the field 𝐹⃗ = 〈𝑥2𝑦𝑧, 𝑥𝑦2𝑧, 𝑥𝑦𝑧2〉 
 
If we were to do this by the original definition of the surface integral, we would need six integrals and six 
normal vectors.  
 
For the divergence theorem: 

∇ ∙ 𝐹⃗ = 2𝑥𝑦𝑧 + 2𝑥𝑦𝑧 + 2𝑥𝑦𝑧 = 6𝑥𝑦𝑧 
 

∫ ∫ ∫ 6𝑥𝑦𝑧𝑑𝑧𝑑𝑦𝑑𝑥
3

0

4

0

2

0

= ∫ ∫ 3𝑥𝑦𝑧2|0
3𝑑𝑦𝑑𝑥

4

0

2

0

= ∫ ∫ 27𝑥𝑦𝑑𝑦𝑑𝑥
4

0

2

0

= ∫
27

2
𝑥𝑦2|

0

4

𝑑𝑥
2

0

= 

 

∫ 216𝑥𝑑𝑥
2

0

= 108𝑥2|0
2 = 432 

 
Divergence theorem converts a surface integral over a closed region into a triple integral over a volume. 
 
Stokes’ Theorem 
A method of line integrals in 3-space of a curve that represents the boundary of some surface. You can 
also think of it as the 3D extension of green’s theorem to the 3D space, and not just on a plain. The 
problems where you are expected to apply Stokes’ Theorem will use boundaries of surfaces in the 
problem description rather than planar regions. 
 

∫𝐹⃗ ∙ 𝑑𝑟
𝑐

= ∬ ∇ × 𝐹⃗ ∙ 𝑑𝑆 = ∬ 𝑐𝑢𝑟𝑙 𝐹⃗ ∙ 𝑑𝑆 

 
Example. 

Evaluate ∫ 𝐹⃗ ∙ 𝑑𝑟
𝐶

 where 𝐹⃗ = 〈−𝑦2, 𝑥, 𝑧2〉 and C is the curve of intersection of the plane 𝑦 + 𝑧 = 2 and 

the cylinder 𝑥2 + 𝑦2 = 1 (orient C to be counterclockwise when viewed from above) 
 
To do this by the definition, we would need to come up with a parametrization of the curve.  𝑟(𝑡) =
〈cos 𝑡 , sin 𝑡 , 2 − sin 𝑡〉. Substitute into the field for x, y, z . Take the derivative of the path. Dot with the 
field. Then integrate a bunch of trig functions. 
 

∇ × 𝐹 = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

−𝑦2 𝑥 𝑧2

|| = (
𝜕

𝜕𝑦
(𝑧2) −

𝜕

𝜕𝑧
(𝑥)) 𝑖̂ − (

𝜕

𝜕𝑥
(𝑧2) −

𝜕

𝜕𝑧
(−𝑦2)) 𝑗̂ + (

𝜕

𝜕𝑥
(𝑥) −

𝜕

𝜕𝑦
(−𝑦2)) 𝑘̂ 

 
= 〈0,0,1 + 2𝑦〉 

 
Make the choice of surface that will make for the easiest math.  Here, choose the plane 𝑦 + 𝑧 = 2 to be 
the surface. 
 



∫ ∫ 〈0,0,1 + 2𝑦〉 ∙ 𝑑𝑆
⬚

⬚

⬚

⬚

= ∫ ∫ 〈0,0,1 + 2𝑦〉
⬚

⬚

⬚

⬚

∙ 〈0,1,1〉𝑑𝐴 

 

𝑑𝑆 = ∇𝐺, 𝐺 = 𝑦 + 𝑧 − 2, ∇𝐺 = 〈0,1,1〉 
 

∫ ∫ (1 + 2𝑦)𝑑𝐴
⬚

⬚

⬚

⬚

= ∫ ∫ (1 + 2𝑟 sin 𝜃)𝑟𝑑𝑟𝑑𝜃
1

0

2𝜋

0

= ∫ ∫ 𝑟 + 2𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃
1

0

2𝜋

0

= 

 

∫
1

2
𝑟2 +

2

3
𝑟3 sin 𝜃|

2𝜋

0 0

1

𝑑𝜃 = ∫
1

2
+

2

3
sin 𝜃 𝑑𝜃

2𝜋

0

=
1

2
𝜃 −

2

3
cos 𝜃|

0

2𝜋

= 𝜋 

 
Example.  

Use Stokes’ Theorem to evaluate the line integral over the field 𝐹⃗ = 〈𝑥2𝑧2, 𝑦2𝑧2, 𝑥𝑦𝑧〉 where S is the 
part of the paraboloid 𝑧 = 𝑥2 + 𝑦2 that lies inside the cylinder 𝑥2 + 𝑦2 = 4 oriented upward. 
 Intersects on the plane z=4. 
 

∇ × 𝐹 = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2𝑧2 𝑦2𝑧2 𝑥𝑦𝑧

|| 

= (
𝜕

𝜕𝑦
(𝑥𝑦𝑧) −

𝜕

𝜕𝑧
(𝑦2𝑧2)) 𝑖̂ − (

𝜕

𝜕𝑥
(𝑥𝑦𝑧) −

𝜕

𝜕𝑧
(𝑥2𝑧2)) 𝑗̂ + (

𝜕

𝜕𝑥
(𝑦2𝑧2) −

𝜕

𝜕𝑦
(𝑥2𝑧2)) 𝑘̂ = 

 
〈𝑥𝑧 − 2𝑦2𝑧, −(𝑦𝑧 − 2𝑥2𝑧), 0 − 0〉 = 〈𝑥𝑧 − 2𝑦2𝑧, 2𝑥2𝑧 − 𝑦𝑧, 0〉 

 
𝐺 = 𝑧 − 𝑥2 − 𝑦2 

∇𝐺 = 〈−2𝑥, −2𝑦, 1〉 
 

∬〈𝑥𝑧 − 2𝑦2𝑧, 2𝑥2𝑧 − 𝑦𝑧, 0〉 ∙ 〈−2𝑥, −2𝑦, 1〉𝑑𝐴 = ∬ −2𝑥2𝑧 + 4𝑥𝑦2𝑧 − 4𝑥2𝑦𝑧 + 2𝑦2𝑧𝑑𝐴 

 
Replace one variable with an expression for the other variables. 
Replace z with the paraboloid surface. 

∬ −2𝑥2(𝑥2 + 𝑦2) + 4𝑥𝑦2(𝑥2 + 𝑦2) − 4𝑥2𝑦(𝑥2 + 𝑦2) + 2𝑦2(𝑥2 + 𝑦2)𝑑𝐴 = 

 

∬(𝑥2 + 𝑦2)(−2𝑥2 + 4𝑥𝑦2 − 4𝑥2𝑦 + 2𝑦2)𝑑𝐴 

 

∫ ∫ 𝑟2(−2𝑟2 cos2 𝜃 + 4𝑟 cos 𝜃 𝑟2 sin2 𝜃 − 4𝑟2 cos2 𝜃 𝑟 sin 𝜃 + 2𝑟2 sin2 𝜃)𝑟 𝑑𝑟𝑑𝜃
2

0

2𝜋

0

 

 

= ∫ ∫ −2𝑟5 cos2 𝜃 + 4𝑟6 cos 𝜃 sin2 𝜃 − 4𝑟6 cos2 𝜃 sin 𝜃 + 2𝑟5 sin2 𝜃 𝑑𝑟𝑑𝜃
2

0

2𝜋

0

= 

 



∫ −
2

6
𝑟6 cos2 𝜃 +

4

7
𝑟7 cos 𝜃 sin2 𝜃 −

4

7
𝑟7 cos2 𝜃 sin 𝜃 +

2

6
𝑟6 sin2 𝜃|

0

2

𝑑𝜃
2𝜋

0

= 

 

∫ −
64

3
cos2 𝜃 +

512

7
cos 𝜃 sin2 𝜃 −

512

7
cos2 𝜃 sin 𝜃 +

64

3
sin2 𝜃 𝑑𝜃

2𝜋

0

 

 

∫ (−
64

3
) (cos2 𝜃 − sin2 𝜃) +

512

7
(cos 𝜃 sin2 𝜃 − cos2 𝜃 sin 𝜃)𝑑𝜃

2𝜋

0

= 

 

∫ (−
64

3
) (cos 2𝜃) +

512

7
(cos 𝜃 sin2 𝜃 − cos2 𝜃 sin 𝜃)𝑑𝜃

2𝜋

0

 

 

−
64

3
(

1

2
) sin 2𝜃 +

512

7
(

1

3
sin3 𝜃 +

1

3
cos3 𝜃)|

0

2𝜋

= 0 

 
Consider choosing a different surface with the same boundary: 
 
Suppose you choose the disk of radius 2 at the height z=4. 
What is the normal to the surface with an upward orientation? 

𝑘̂ = 〈0,0,1〉 
 
How does that change our math? 
 
It doesn’t change the curl, but it does change the result of dotting with the curl. 
 

∇ × 𝐹 = 〈𝑥𝑧 − 2𝑦2𝑧, 2𝑥2𝑧 − 𝑦𝑧, 0〉 
 
Normal vector dotted with the curl: 

〈𝑥𝑧 − 2𝑦2𝑧, 2𝑥2𝑧 − 𝑦𝑧, 0〉 ∙ 〈0,0,1〉 = 0 + 0 + 0 = 0 
 
The function to be integrated over the region is just 0…. Which means the integral is 0. 
 
 
 
 


