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Divergence Theorem (16.9)
Stokes’ Theorem (16.8)

The Divergence Theorem:
ﬂﬁ-ds = ﬂfﬁ’-ﬁdv = ﬂf div F dV
Does the require that the region bounded by the surface(s) be a closed region.

Example.
Find the flux of the vector field F = (z, ¥, x) over the unit sphere.
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Evaluate the flux integral where F = (xy, y2 + e*z* sin (xy)) and S is the surface of the region bounded
by the parabolic cylinder z = 1 — x2 and the planes z=0, y=0 and y + z = 2.

Example.

To do this using the definition of the flux integral:4 surfaces. We would have to find the normal to the
surface for each one. Each one would be a double integral, not necessarily great functions, and each
would be over a different set of variables.

Using the divergence theorem:
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Example.
Find the flux through the surfaces bounding the box enclosed by the planes x=0, x=2, y=0, y=4, z=0, z=3

for the field F = (x2yz, xy?z, xyz2)

If we were to do this by the original definition of the surface integral, we would need six integrals and six
normal vectors.

For the divergence theorem:
V-F= 2xyz + 2xyz + 2xyz = 6xyz
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Divergence theorem converts a surface integral over a closed region into a triple integral over a volume.

Stokes’ Theorem

A method of line integrals in 3-space of a curve that represents the boundary of some surface. You can
also think of it as the 3D extension of green’s theorem to the 3D space, and not just on a plain. The
problems where you are expected to apply Stokes’ Theorem will use boundaries of surfaces in the
problem description rather than planar regions.

fﬁ-d?=ffoﬁ-dgzﬂ-curlﬁ-df
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Example.

Evaluate fc F-d7 where F = (—y?,x,z%) and Cis the curve of intersection of the plane y + z = 2 and
the cylinder x? + y? = 1 (orient C to be counterclockwise when viewed from above)

To do this by the definition, we would need to come up with a parametrization of the curve. 7(t) =
(cost,sint,2 — sin t). Substitute into the field for x, y, z . Take the derivative of the path. Dot with the
field. Then integrate a bunch of trig functions.
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Make the choice of surface that will make for the easiest math. Here, choose the plane y + z = 2 to be
the surface.



dS=VG,G=y+z—2,VG =(0,1,1)
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Example.

Use Stokes’ Theorem to evaluate the line integral over the field F = (x2z2,y?z2, xyz) where S is the
part of the paraboloid z = x? + y? that lies inside the cylinder x? + y? = 4 oriented upward.
Intersects on the plane z=4.
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Replace one variable with an expression for the other variables.
Replace z with the paraboloid surface.
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Consider choosing a different surface with the same boundary:

Suppose you choose the disk of radius 2 at the height z=4.
What is the normal to the surface with an upward orientation?
k =(0,0,1)

How does that change our math?
It doesn’t change the curl, but it does change the result of dotting with the curl.
VXF = (xz—2y?z2x%z — yz,0)

Normal vector dotted with the curl:
(xz — 2y?%2,2x%2 — y2,0)-(0,01) =0+ 0+ 0 =0

The function to be integrated over the region is just 0.... Which means the integral is 0.



