Instructions: Show all work. Use exact answers unless otherwise asked to round.

1. Evaluate the line integrals on the indicated paths.

a.
$$\int_C xyzds$$
, $C: x = 2\sin t$, $y = t$, $z = -2\cos t$, $0 \le t \le 2\pi$

b.
$$\int_C \vec{F} \cdot d\vec{r}, \vec{F}(x, y) = xy\hat{\imath} - 3y^2\hat{\jmath}, \vec{r}(t) = 11t^2\hat{\imath} + t\hat{\jmath}, 0 \le t \le 1$$

2. Consider the function $f(x,y) = \ln(x+2y^2) - \cos xy$. Find f_x , f_y , f_{xy} .

3. Calculate the total differential of $f(x, y, z) = xe^{yz}$, and then use the values of the function at (1,4,0) to estimate the value of the function at the point (0.95,4.1,0.01).