MTH 277, Homework #2, Spring 2025

Name

Instructions: Write your work up neatly and attach to this page. Record your final answers (only) directly on this page if they are short; if too long indicate which page of the work the answer is on and mark it clearly. Use exact values unless specifically asked to round.

- 1. Find an equation of the line with the given properties, in the indicated form.
 - a. A(2,4,-3), B(3,-1,1) in parametric form.
 - b. A(-8,2,4), B(3,-2,5) in symmetric form.
 - c. Parallel to $x + 2 = \frac{1}{2}y = z 3$ through the point (1, -1, 1) in both forms.
- 2. Find the equation of the plane.
 - a. Passes through the point (5, -3, -4) and perpendicular to vector (2, -1, 3)
 - b. Passes through the point (-6,0,8) and perpendicular to line x = 5 2t, y = -4 + 2t, z = 0.
 - c. Passes through (2,3,-2), (3,4,2) and (-1,-1,0)
 - d. Contains the y-axis and makes an angle of $\pi/6$ with the positive x-axis.
 - e. Contains the lines given by $\frac{x-1}{-2} = y-4 = z$ and $\frac{x-2}{-3} = \frac{y-1}{4} = \frac{z-2}{-1}$
 - f. Passes through (2,2,1) and (-1,1,-1) and is perpendicular to the plane 2x 3y + z = 3.
- 3. Find a set of parametric equations for the line of intersection of the planes 3x+2y-z=7, x-4y+2z=0. At what angle do they intersect?

4. Find the distance between the point and the plane/line using the formulas $D = \frac{\|\overrightarrow{PQ} \times \overrightarrow{v}\|}{\|\overrightarrow{v}\|}$, and $D = \frac{\|\overrightarrow{PQ} \cdot \overrightarrow{n}\|}{\|\overrightarrow{n}\|}$ respectively where Q is any point in the plane/line. a. $P(2,8,4) \quad 2x + y + z = 5$ b. $P(-2,1,3) \quad x = 1-t, y = 2+t, z = -2t$

- 5. Find the domain of the vector-valued function. Find $\|\overrightarrow{r(t)}\|$.
 - a. $\overrightarrow{r(t)} = \sqrt{4 t^2} \vec{i} + t^2 \vec{j} 6t\vec{k}$ b. $\overrightarrow{r(t)} = \sqrt[3]{t}\vec{i} + \frac{1}{t+1}\vec{j} + (t+2)\vec{k}$ c. $\overrightarrow{r(t)} = (\ln t - 1)\vec{i} + t\vec{j}$ d. $\overrightarrow{r(t)} = (1 - t)\vec{i} + \sqrt{t}\vec{k}$
- Convert the plane curve (2-D) into 2 different vector-valued function. There are more than two correct answers.
 - a. y = 4 x b. $x^2 + y^2 = 25$
- 7. Find the domain of the function. Evaluate the function at the given points and simplify.

a.
$$f(x, y) = 4 - x^2 - y^2; (0, 0), (2, 3), (1, y), (x, 0), (t, t^2)$$

b. $f(x, y) = \ln(xy - 6); (5, e), (e, 1), (1, y), (x, 0), (t, e^t)$

- 8. Find the parametric equation for the space curve represented by the intersection of surfaces using the given parameter (if stated), or choose an appropriate one.
 - a. $z = x^2 + y^2, x + y = 0$ x = t c. $x^2 + y^2 + z^2 = 4, x + z = 2$ $x = 1 + \sin t$

b.
$$z = \sqrt{x^2 + y^2}, z = 1 + y$$
 d. $z = 4x^2 + y^2, y = x^2$

- 9. Find two different parametrizations of the following paths.
 - a. $x^2 + y^2 = 9$ starting and ending at the point (3,0) counterclockwise.

 - b. $\frac{x^2}{16} + \frac{y^2}{9} = 1$ starting at the point (4,0) and ending at the point (0,3), counterclockwise. c. Along the line segments connecting (0,0,0), (1,0,0), (1,0,1), (1,1,1). d. Along the curve $y = x^2$ from (0,0) to (2,4), then along the line segment (2,4) to (0,4), and then back to the origin.
 - e. Along the top half of the hyperbola $\frac{y^2}{16} \frac{x^2}{4} = 1$, between $(-3, 2\sqrt{13})$ and $(3, 2\sqrt{13})$.