Section 8.5: Linear Functions and Models

MATH 102 Course Outline Unit IV

Objective: Determine appropriate window settings on a graphing utility.

Instructor Notes:

You may want to do one or more of the even problems from *Exercises* 57-70 as in-class examples.

- 1. Use the questions about implied domain and independent/dependent variables to discuss a reasonable viewing window on the graphing calculator.
 - a. For example in *Exercise 64*, miles driven and rental cost must be greater than or equal to zero, so our *Xmin* and *Ymin* need not be less than zero.
 - b. Thus, in part (c) the implied domain is $[0,\infty)$.
- 2. Then graph the function on the calculator to
 - a. Check and verify the equation from part (a).
 - b. Check and verify the answer to (d) by evaluating the function at m=860. (See Graphing Calculator Guide Section 8.3.)

MATH 102 Course Outline Unit III

Objective: Model data using the linear regression feature on the graphing calculator.

In *Exercises* 77-80, students will use the graphing calculator to

- a) Draw a scatter diagram
- b) Find the line of best fit using the Linear Regression feature

On the following pages you will find step-by-step instructions for you and your students. You may want to distribute these to your students as a handout and let them practice in class or at home.

DRAWING A SCATTER DIAGRAM AND USING LINEAR REGRESSION TO FIND A LINE OF BEST FIT

STEP 1: Enter the data into lists.

Press

and then select *1: Edit*.

You will now see the data screen with six possible lists, L_1 through L_6 .

CALC TESTS	L1	L2	L3 1	L4	L5	LG	6
1HEdit. 2 SortA(7 ContA(ſ
4:ClrList 5:SetUpEditor							
	L1(1) =			L6(1)=			

<u>Note</u>: If there is already data in any of the lists, you need to clear the lists. Do this by placing your cursor at the top of the list you wish to

clear and then press CLEAR and ENTER.	Do not press	This
will delete the list from your calculator.		

Another way to clear a list is to press , select <i>4: ClrList</i> . Then
type in the list you want cleared (1 for list L ₁) and press
ENTER

\subset	5	22	L3 1	CALC TESTS	ClrList L1	_
	91.000 672.00			1:Edit. 2:Sontë/		Done
	279.00			3-SortBC	■	
	530.00			ECIrList		
	376.00 188.00			3:SetUPEditor		
	L1 = {9;	1.000	,472 .			

We are now ready to enter the data into the lists. Let's enter the numbers:

2	5	7	9	11	(x-values)
3	6	9	11	12	(y-values)

<u>Note</u>: It is common practice to enter the first list of numbers (x-values) into L_1 and the second list of numbers (y-values) into L_2 .)

Press

ENTER

after each number, and use the arrow keys

to move between L_1 and L_2 . To correct a data entry, highlight the entry that is wrong and enter the correct data value. To delete a data entry, highlight

the data value you wish to delete and press **DEL**. To insert a new entry into a list, highlight the position directly below the place you wish to insert

the new value and then select $INS(\bigcirc 2nd \bigcirc DEL)$ and then enter the data value.

Once completed, your lists should look like this:

L1	L2	L3 3
267. 91	769.112	
L3(1)=		

STEP 2: Plot the data points.

To construct a scatter plot of the points, select STAT PLOT

2nd Y=

Select **1**: **Plot1** and press _____. Then on the next screen select **On** (put

cursor on **On** and press $(I_1 \text{ enter})$ and the scatter plot (first graph on the first row). Set **Xlist** to L₁ and set **Ylist** to L₂. Set your mark for each point by selecting a box, cross, or dot.

STEP 3: Find the regression equation

From the second screen above, you see that the linear regression equation is

 $y \approx 1.049x + 1.066.$ To paste the regression equation into the vertex editor, repeat the process above (STAT, CALC, 4: LinReg(ax+b)), but <u>do not</u> press to compute the equation values just yet....

