Energy Balance Model: Planctary Variability

Betsy McCall

Agenda

Masks
Solar variability
Longwave radiation
Obliquity
Eccentricity
Exoplanets

Introduction

I am looking at factors that influence global equilibrium temperatures by changing planetary properties.

We experimented with some parameter adjustments in class, but here we'll look at changes to the central star of the system, as well as orbital changes and other properties one at a time to see which have the biggest impact.

At the end, the goal will be to examine combinations of these features that might be found in exoplanets to see what happens.

Planctary Masks

Other worlds

Planetary Masks

Planetary Masks

Global Equilibrium 'Temperatures

	Earth Mask	Reverse Earth	Ocean Mask	Land Mask
Global Mean Temp	18.1652	18.1674	18.1892	18.1652

Solar Variability

Different suns, different times

Timeline

When the Solar System formed, solar output was only 68% of its present value.

But the Earth was also still molten

Humans have evolved to survive in present climate conditions, with global mean temperatures around 18 degrees Celsius.

Eventually, the Sun will expand to a gas
giant and probably swallow the Earth
whole, but before that happens, solar energy output will increase so much that the oceans will boil away. Energy output in 5 billions years will be 61% higher than it is
now.
now.

As the Sun ages, its output increases. Without more greenhouse gasses, global mean temperatures would still be below freezing 2 billion years ago.

As the Sun ages, its energy output continues to increase. In 2 billion years, the global mean temperature will be over 40 degrees Celsius: too hot for humans.

Solar Variability over the Life of the Sun

Epoch	Solar Constant $\left(W^{-2}\right)$	Global Mean Temperature (Celsius)
4 billion years ago	928.9	-18.2078
3 billion years ago	1021.8	-10.3629
2 billion years ago	1124.0	-1.7419
1 billion years ago	1236.4	7.7395
Now	1360.0	18.1656
1 billion years from now	1496.0	29.6377
2 billion years from now	1645.6	42.2570
3 billion years from now	1810.2	56.1417
4 billion years from now	1991.2	71.4097
5 billion years from now	2190.3	88.2045

Other possible areas to explore:

changing distance solar filares

Red dwarfs are particularly volatile and may endanger exoplanet habitability: may test with Monte Carlo simulation?

Outgoing
 Longwave Radiation

Not all planets emit the same amount of energy

Coming Soon

- We experimented with adjusting these values in the Week 5 practical, but my goal here is to add context to adjusting these numbers.
- We know Venus is hot. What are the numbers for the Longwave radiation for Venus?
- We know Mars is cold. What are their numbers?
- I've found some values but looking for a complete set for both planets.

Obliquity

How does axial list impact climate?

Obliquity impact on insolation

10-degree tilt
Variation pattern
forms wavelike
pattern as angle increases

45-degree tilt
Periods of bright sun and little sun creep towards the equator

90-degree tilt
Periods of darkness
extend to the
equator, extremes increase

Obliquity affects global mean temp

- Obliquity has some impact on global mean temperatures. 0-degree tilt has the lowest global mean temperature
- Highest global mean temperatures at 45degrees
- Global mean temperature at 90-degrees is higher than at 0-degrees.

Orbital
 Eccentricity

Not all planetary orbits are nearly circular

Orbital Eccentricities

Planet	Eccentricity	Global Mean Temperature
Perfect Circle	0	14.3623
Earth	0.017	18.1656
Gas Giants (Uranus, Jupiter, and Saturn)	~ 0.05	25.7314
Mars	0.0934	36.0494
Mercury	0.2056	64.6604
Eris	0.44	133.4438
Sedna	0.855	285.1156

Temperature Varialbility for Three Orbital Eccentricities

Orbital eccentricities mean that the planet gets closer to the Sun and takes up more energy and can't radiate it away fast enough. This drives up the temperature. And the more eccentric the orbit, the higher the temperature rises in this model.

I'm not sure how realistic this is. As the temperature rises, the planet would have to radiate more energy into space, but in this model the outgoing radiation values are constant.

Exoplancts

Planetary systems don't only differ from the Earth in one dimension.

Coming Soon

- Gotta work out the outgoing longwave radiation values before tackling this.

Summary

Planetary bodies differ on many dimensions.

- Incoming radiation
- Eccentricity
- Axial Tilt
- Outgoing Radiation
- Surface features

Questions?

References

```
[NMS83] gerald R north, john G mengel, and DA short. \Simple energy balance model resolving the
Seasons and the continents: application to the astronomical theory of the ice ages". In: journal
Of geophysical research: oceans 88.C11(1983), pp. 6576{6586
[05] \energy balance models". In: A climate modelling primer. John wiley sons, itd, 2005
Chap.3, pp.81{116. Isbn: 9780470857618. Doi: https://doi.Org/10.1002/0470857617.Ch3
Eprint: https: / / onlinelibrary. wiley . com / doi / pdf / 10 . 1002 / 0470857617. ch3. Url:
Https:llonlinelibrary.Wiley.Com/doi/abs/10.1002/0470857617.Ch3
[Tit+07] dmitry v. Titov et al. \Radiation in the atmosphere of venus". In: exploring venus as a ter.
Restrial planet. American geophysical union (AGU), 2007, pp. 121{138. |sbn: 9781118666227
Doi: https:/ldoi.Org/10.1029/176gm08. Eprint: https:/lagupubs.Onlinelibrary.Wiley.
Com/doi/pdf/10.1029/176gm08.Url: https:/lagupubs.Onlinelibrary.Wiley.Com/doi/
Abs/10.1029/176gmo8
[Pie10] raymond t. Pierrehumbert. Principles of planetary climate. Cambridge university press, 20 10.
Doi: 10.1017/cboo9780511780783
[Mad+12] j. Madeleine et al. \Assessment of the global energy budget of mars and comparison to the
Earth".In: AGU fall meeting abstracts. Vol. 2012. Dec. 2012, p21g{04.
[kni15] sylvia knight. \PIanetary energy budgets: understanding earth's climate system can teach us
About other planets." In: science in school 34 (2015), pp. 12{15
```

